

18 April 2024

Significant Gold Exploration Results Continue

Highlights

North Laverton Gold Project, Western Australia

Significant gold mineralisation from the current resource definition program on the Boundary and Neptune Prospects continues to deliver significant results include:

- 11m @ 16.25g/t Au from 208m including 2m @ 77.75g/t Au from 208m (RC24BDY146);
- 3m @ 30.36g/t Au from 283m including 0.7m @ 105g/t Au from 283.46m (DDRE-BDRC035);
- 9m @ 4.40g/t Au from 248m including 1m @ 34.50g/t Au from 254m (DDRE-BDRC035); and
- 7m @ 3.04g/t Au from 222m (R24CBDY148).

These results will be integrated into Emerald's (as manager) Maiden Resource estimation for the North Laverton Gold Project.

Initial regional reconnaissance programs result in two new discoveries at the Freemans Find and Banjawarn Prospects including:

- 5m @ 20.61g/t Au from 33m including 1m @ 101g/t Au from 36m (RC24FMF001);
- 21m @ 3.98g/t Au from 26m including 1m @ 49.90g/t Au from 29m (RC24FMF009); and
- 14m @ 1.06g/t Au from 49m (RC24BNJ012).

North Laverton Gold Project

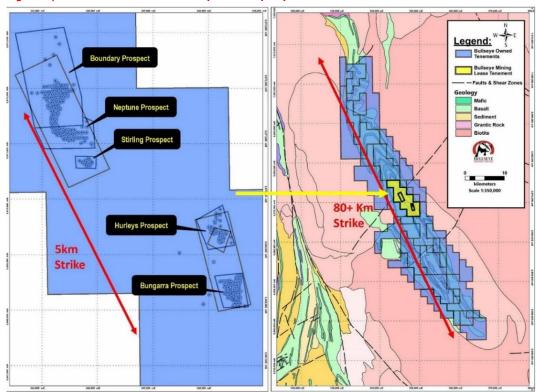
Bullseye's North Laverton Gold Project consists of 36 exploration licences (including 5 applications) and 4 mining licences covering the majority of the Dingo Range greenstone belt with more than 800km² of tenure (refer Figure 1) and has the potential to host multiple standalone deposits or satellite deposits to supply additional ore to a central milling location. It includes the gold mineralised prospects of Boundary, Neptune, Stirling, Hurleys and Bungarra extending over a 6.4km strike length.

Boundary-Bungarra Resource Drill Program

Drilling results to date (current and historical) continue to demonstrate the continuity of mineralisation at depth and along strike. Two RC percussion drill rigs and one diamond drill rig are currently engaged on site, continuing resource drilling activities and investigating along strike extensions, as well as drilling other regional targets.

In the March 2024 quarter, the Company completed 40 collars (7,092m) of both RC (6,693m) and diamond core drilling (399m), on resource extension drilling on the Boundary prospect as well as completing 17 drill holes targeting potential pit dewatering bores (1,432m). Assays for circa 1,000m of drilling remain pending.

To date 631 collars (83,303.7m) of the 98,000m resource definition program has been completed, of which 328 collars (67,738.7m) have been drilled since Emerald acquired a controlling interest in Bullseye. Recently returned results from the current RC and diamond drilling program for the Boundary Bungarra Resource Drill Program (refer Figures 2, 3 and 4) include:


- 11m @ 16.25g/t Au from 208m including 2m @ 77.75g/t Au from 208m (RC24BDY146)⁽⁸⁾;
- 3m @ 30.36g/t Au from 283m including 0.7m @ 105g/t Au from 283.46m (DDRE-BDRC035)⁽⁸⁾;
- 4m @ 11.42g/t Au from 92m (RC24BDY146)⁽⁸⁾;
- 9m @ 4.40g/t Au from 248m including 1m @ 34.50g/t Au from 254m (DDRE-BDRC035)⁽⁸⁾;
- 3m @ 10.59g/t Au from 346m (DDRE-BDRC035)⁽⁸⁾;
- 7m @ 4.64g/t Au from 390m (DDRE-BDRC035)⁽⁸⁾;
- 14m @ 1.06g/t Au from 49m (RC24BNJ012)⁽⁸⁾; and
- 7m @ 3.04g/t Au from 222m (24RCBDY148)⁽⁸⁾.

Ground Floor, 1110 Hay Street WEST PERTH WA 6005 P.O. Box 1384 WEST PERTH WA 6872

ACN: 118 431 736

www.bullseyemining.com.au

Figure 1 | North Laverton Tenement Map with the prospect locations

Drilling completed under Emerald management to date has focussed on the Boundary, Stirling and Neptune prospects of the Boundary-Bungarra mineralised trend (refer Figure 2) with highlighted significant results including:

- 15m @ 5.91g/t Au from 291m (RCDD23BDY022)⁽⁴⁾;
- 9m @ 7.35g/t Au from 59m including 1m @ 58.27g/t Au from 61m and 1m @ 16.02g/t Au from 73m (RC22NPT027)⁽²⁾;
- 38m @ 1.65g/t Au from 56m including 1m @ 16.60g/t Au from 92m (RC22BDY009)⁽²⁾;
- 12m @ 4.94g/t Au from 62m including 1m @ 9.07g/t Au from 69m and 1m @ 42.90g/t Au from 72m (RC22NPT003)⁽¹⁾;
- 43m @ 1.17g/t Au from 253m (RC23BDY065)⁽⁴⁾;
- 7.08m @ 6.91g/t Au from 329m (RCDD22BDY001)⁽⁴⁾;
- 8.88m @ 5.06g/t Au from 313.12m (RCDD23BDY059)⁽⁴⁾;
- 15m @ 2.48g/t Au from 108m including 1m @ 7.39g/t Au from 116m and 2m @ 7.79g/t Au from 118m (RC22NPT004)⁽¹⁾;
- 13m @ 2.54g/t Au from 76m including 1m @ 19.30g/t Au from 81m (RC22BDY001)⁽¹⁾;
- 14m @ 2.37g/t Au from 115m including 4m @ 4.63g/t Au from 117m (RC22NPT020)⁽²⁾;
- 5m @ 6.33g/t Au from 100m including 2m @ 14.70g/t Au from 100m (RC22BDY016)⁽²⁾;
- 14m @ 1.98g/t Au from 49m (RC23BDY029)⁽³⁾;
- 4m @ 7.12g/t Au from 22m including 1m @ 25.97g/t Au from 25m (RC23BDY047)⁽³⁾;
- 15m @ 1.13g/t Au from 76m (RC23BDY051)⁽³⁾;
- 5m @ 3.23g/t Au from 54m including 1m @ 14.34g/t Au from 58m (RC23BDY031)⁽³⁾; and
- 3m @ 5.13g/t Au from 352m including 1m @ 13.30g/t Au from 354m (RCDD23BDY041)⁽³⁾.
- 24m @ 3.04g/t Au from 64m (RC23BDY069)⁽⁵⁾;
- 20m @ 3.68g/t Au from 244m including 2m @ 23.27g/t Au from 252m (RC23BDY081)⁽⁵⁾;
- 19m @ 2.45g/t Au from 72m (RC23STI012)⁽⁵⁾;
- 8m @ 3.44g/t Au from 202m (RC23BGA013)⁽⁵⁾;
- 10m @ 3.94g/t Au from 142m (RC23NPT054)⁽⁵⁾;
- 17m @ 2.13g/t Au from 35m (RCDD23HUR001)⁽⁵⁾; and
- 3.26m @ 111.79g/t Au from 214.74m including 0.86m @ 422.00g/t Au from 214.74m (DDRE-BDRC017)⁽⁶⁾;
- 16.6m @ 5.27g/t Au from 202m including 0.4m @ 179g/t Au from 218.2m (RCDD23BDY102)⁽⁶⁾; and
- 3m @ 19.09g/t Au from 121m (RC23BDY121)⁽⁶⁾.

Notes:

(1) Refer Emerald's ASX announcement 7 October 2022; (2) Refer Emerald's ASX announcement 21 January 2023; (3) Refer Emerald's ASX announcement 28 April 2023; (4) Refer Emerald's ASX announcement 4 July 2023; (5) Refer Emerald's ASX announcement 30 October 2023; (6) Refer Emerald's ASX Announcement 24 January 2024; (7) Refer Emerald's ASX Announcement 18 March 2024; and (8) Refer Appendix One

Results from drilling to date continue to delineate mineralised high-grade structures. Historical drilling had only tested to ~110m vertical depth (average) with the drilling completed by the Company to date infilling and extending a significant portion of the mineralisation at Boundary, Stirling and Neptune Prospects to ~200-250m vertical.

The mineralisation remains open at depth and along strike throughout a significant portion of the five prospects (refer Figures 2 and 3).

Figure 2 | Boundary, Stirling and Neptune Drill collars with recent (in black – refer Appendix One) and previously announced (in blue) significant results (Plan view)

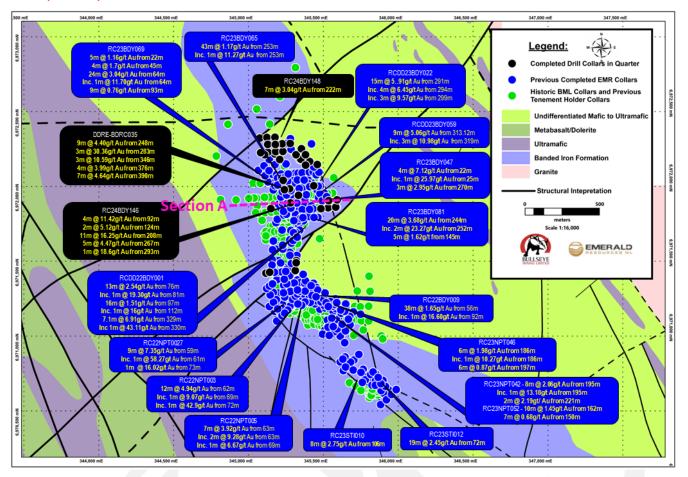
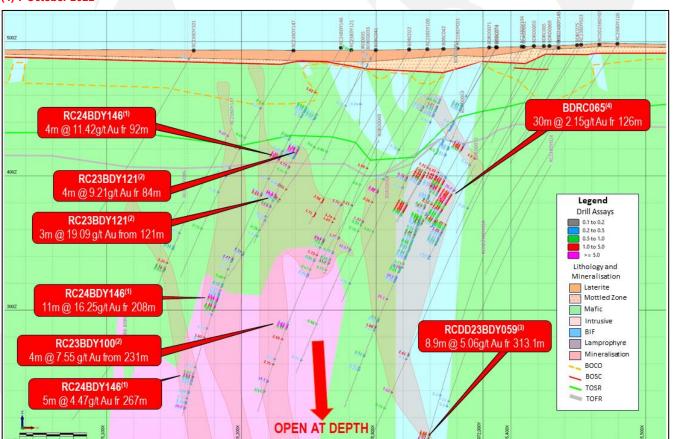



Figure 3 | Section A Cross section from the northern edge of the Boundary prospect showing high-grade zones of continuous mineralisation which remains untested in adjacent sections and at depth. Significant intersections refer (1) Appendix One (2) 24 January 2024 (3) 4 July 2023 (4) 7 October 2022

Boundary-Bungarra Historic Significant Intersections

Bullseye's current resource drill program is designed to test the strike and down dip extension of historic significant intersections. These previous drill programs include 84,028m (80,684m RC and 3,344m diamond) completed by Bullseye since 2014 and 45,583m of drilling completed by various previous tenement holders (34,695m RC, 4,587m diamond, 432m AC and 5,869m RAB), (refer Figure 4). Drill results highlights from both programs include:

Boundary⁽¹⁾:

- 5m @ 60.25g/t Au from 171m (WDDH8);
- 45m @ 6.07g/t Au from 73m (BDRC058);
- 27m @ 9.34g/t Au from 153m (BDRC035);
- 53m @ 3.44g/t Au from 66m (WRC17) (EOH);
- 47m @ 3.42g/t Au from 93m (BDRD0025);
- 30m @ 5.16g/t Au from 151m (WDDH10);
- 19m @ 7.89g/t Au from 58m (BRC1002);
- 8m @ 17.14g/t Au from 38m (BDRC060);
- 40m @ 3.17g/t Au from 55m (BDRD0022);
- 27m @ 4.53g/t Au from 62m (BDRC014);
- 9m @13.55g/t Au from 42m (WDDH1);
- 30m @ 3.82g/t Au from 179m (BDRD0043);
- 9m @ 12.55g/t Au from 42m (WRC23);
- 27m @ 4.07g/t Au from 62m (BDRD0094).

Neptune⁽²⁾:

- 22m @ 4.87g/t Au from 17m (NPRD0056);
- 9m @ 9.44g/t Au from 82m (NPRD0078);
- 33m @ 3.82g/t Au from 37m (NPMD1019);
- 15m @ 6.60g/t Au from 67m (NPMD1007);
- 3m @ 29.85g/t Au from 45m (NPMD1026);
- 25m @ 5.24g/t Au from 0m (NPGC0053);
- 40m @ 2.98g/t Au from 14m (NPGC0025);
- 6m @ 14.24g/t Au from 37m (NPGC0018);
- 9m @ 9.36g/t Au from 7m (NPGC0045).

Neptune⁽³⁾:

- 26m @ 6.95g/t Au from 40m (NPRD0039);
- 16m @ 10.10g/t Au from 63m (NPRD0026);
- 17m @ 7.44g/t Au from 29m (NPRD0007).

Stirling⁽¹⁾:

- 26m @ 5.83g/t Au from 33m (STRD0016);
- 38m @ 2.62g/t Au from 16m (SRC7);
- 31m @ 2.75g/t Au from 35m (STRD0008);
- 27m @ 2.30g/t Au from 59m (STRD0007);
- 27m @ 2.25g/t Au from 31m (STRD0019).

Hurleys⁽¹⁾:

- 12m @ 3.30g/t Au from 13m (HRRD0020);
- 12m @ 2.77g/t Au from 47m (HRRD0050);
- 3m @ 9.00g/t Au from 62m (HRRD0062);
- 9m @2.27g/t Au from 64m (HRRD0032).

Bungarra⁽¹⁾:

- 14m @ 31.46g/t Au from 33m (LAVRD0126);
- 19m @ 13.41g/t Au from 32m (DRP495);
- 17m @ 13.28g/t Au from 49m (LAVRD0132);
- 3m @ 67.37g/t Au from 30m (BFRC15);
- 5m @ 39.41g/t Au from 31m (LAVRD0133);
- 9m @ 17.02g/t Au from 33m (BFRC13);
- 6m @ 23.26g/t Au from 89m (LAVRD0054);
- 9m @ 15.45g/t Au from 39m (LAVRD0142);
- 14m @ 9.74g/t Au from 30m (LAVGW0003);
 9m @ 14.58g/t Au from 75m (LAVRD0054);
- 6m @ 19.28g/t Au from 53m (LAVRD0135).

⁽¹⁾ Refer Emerald's ASX announcement 7 October 2022; (2) Refer Emerald's ASX announcement 5 July 2022; (3) Refer Emerald's ASX announcement 31 January 2023

<u>Legend:</u> Collars Drill Type AC **Boundary Prosp** DD RAB RC Geology Biotite Granitic Rock Basalt Neptune Pros Mafic Ultra-Mafic Prospect Boundaries Bullseve Mining Tenements **Hurleys Prosp** Bungarra Pro: 1,000

Figure 4 | Plan view of Bullseye prospects targeted by the current resource drill program

North Laverton Gold Project Regional Exploration

In the March 2024 quarter, the Company commenced a regional RC drilling program, the first under Emerald management, which has resulted in two new discoveries at the Freemans Find and Banjawarn Prospects. The Freeman's Find program consisted of 30 collars for a total of 3,054m and the Banjawarn program of 13 collars for 1,382m (refer Figure 5). Assays for circa 3,500m of drilling remain pending. Recently returned results from the current RC program for the Freeman's Find and Banjawarn Projects (refer Figures 5, 6, 7, 8, 9, 10, 11 and 12) include:

- 5m @ 20.61g/t Au from 33m including 1m @ 101g/t Au from 36m (RC24FMF001)⁽⁷⁾;
- 21m @ 3.98g/t Au from 26m including 1m @ 49.90g/t Au from 29m (RC24FMF009)⁽⁷⁾
- 1m @ 43.2g/t Au from 3m (RC24FMF013)⁽⁷⁾; and
- 14m @ 1.06g/t Au from 49m (RC24BNJ012)⁽⁸⁾.

Notes

(7) Refer Emerald's ASX Announcement 18 March 2024; and

(8) Refer Appendix One.

meters Scale 1:30.000

The Banjawarn Prospect is located approximately 25km southeast of Boundary/Neptune prospect (refer Figure 5) and the reconnaissance program has returned a number of significant results including **14m @ 1.06g/t Au from 49m (RC24BJN012)**, a broad zone of mineralisation open along strike and at depth (refer Figures 11 and 12). The mineralisation appears to be associated with a sheared quartz structure near to the contact between an ultramafic and felsic to intermediate unit.

The Freeman's Find Prospect is located 8km south of Boundary/Neptune prospect (refer Figure 5). On 18 March 2024, the Company announced a high-grade gold discovery at from the reconnaissance drill program of 5m @ 20.61g/t Au from 33m including 1m @ 101g/t Au from 36m (RC24FMF001) and 21m @ 3.98g/t Au from 26m including 1m @ 49.9g/t Au from 29m (RC24FMF009) (refer ASX announcement 18 March 2024). The results to date indicate the mineralisation has a potential strike length of 500m and is untested both along strike and at depth (refer Figures 6, 7, 8, 9 and 10). Mineralisation is associated with quartz veining, interpreted to be striking towards the NW, and associated with regional deformation. The mineralised quartz veining is located within or proximal to a granodiorite intrusion and is surrounded by mafic basalts.

Both the Freeman's Find and Banjawarn regional drill programs were designed to test aeromagnetic and geochemical targets, historical workings and historic RAB, VAC and RC anomalous drill results.

Page 5

Figure 5 | North Laverton Geology Map with the prospect locations

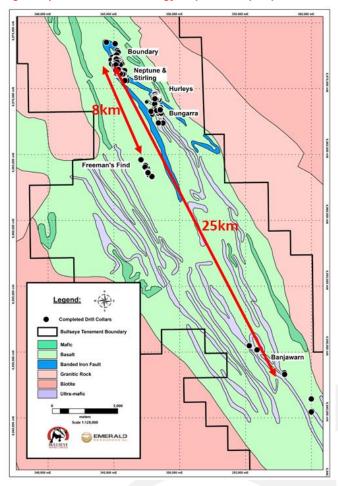


Figure 6 | A plan view of recent Freeman's Find Prospect drilling completed (refer Emerald's ASX announcement dated 18 March 2024)

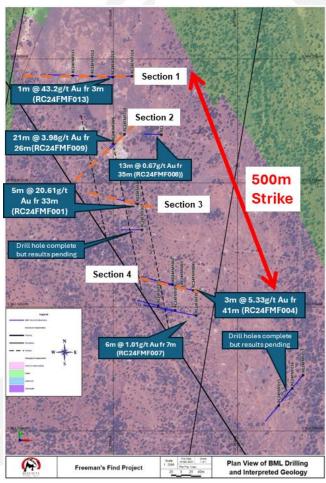


Figure 7 | Section 1 Cross section from the northern edge of the Freeman's Find Prospect. All highlighted significant intersections refer to Emerald's ASX announcement dated 18 March 2024

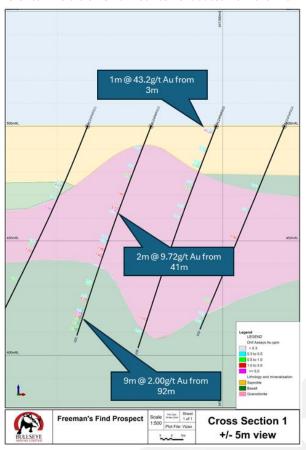


Figure 9 | Section 3 Cross section from the Freeman's Find Prospect. All highlighted significant intersections refer to Emerald's ASX announcement dated 18 March 2024

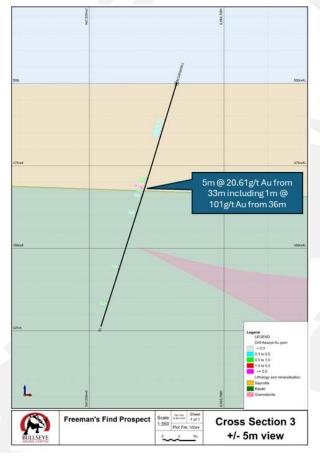


Figure 8 | Section 2 Cross section from the Freeman's Find Prospect. All highlighted significant intersections refer to Emerald's ASX announcement dated 18 March 2024

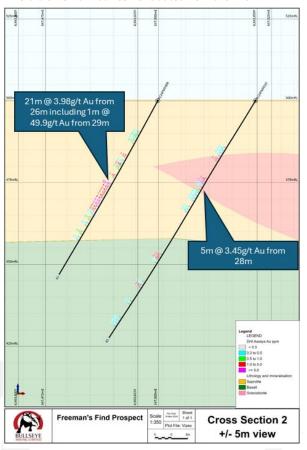


Figure 10 | Section 4 Cross section from the Freeman's Find Prospect. All highlighted significant intersections refer to Emerald's ASX announcement dated 18 March 2024

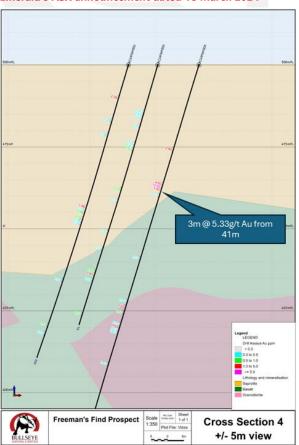


Figure 11 | Plan view of the first pass reconnaissance drill program completed at the Banjawarn Project. All highlighted significant intersections refer Appendix One

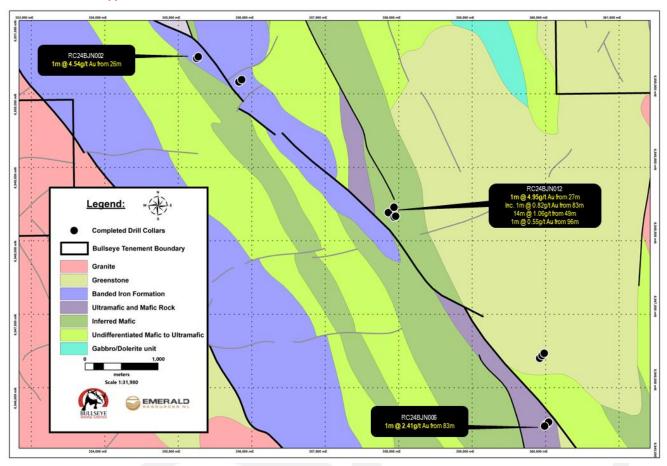
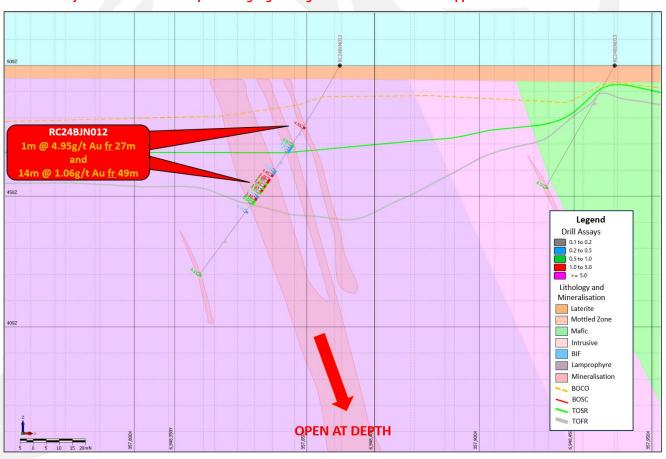



Figure 12 | A Cross section (with a +/- 100m viewing plane) the Banjawarn Project showing a broad zone of mineralisation which remains untested in adjacent sections and at depth. All highlighted significant intersections refer Appendix One

Authorised by the Bullseye Board

Morgan Hart Chairman

Competent Persons Statement

The information in this report that relates to Exploration and Drill Results from Bullseye Recent Drilling (Appendix One) is based on information compiled by Mr Keith King, who is an employee of Bullseye's controlling shareholder Emerald Resources NL and who is a Member of The Australasian Institute of Mining & Metallurgy. Mr Keith King has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Keith King has reviewed the contents of this release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

Appendix One | New Drill Results from Recent Drilling at Boundary and Banjawarn Prospects (Bullseye) (>2 gram metre)

Prospect	Hole Name	Easting	Northing	RL	Dip	Azi	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	208	219	11.0	16.25
_	including							208	210	2.0	77.75
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	283	286	3.0	30.36
	including							283.46	284.17	0.7	105.00
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	92	96	4.0	11.42
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	248	257	9.0	4.40
	including							254	255	1.0	34.50
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	346	349	3.0	10.59
	including							348	349	1.0	21.10
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	390	397	7.0	4.64
	including							395	396	1.0	28.40
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	267	272	5.0	4.47
Boundary	RC24BDY148	345,229	6,972,239	500	-60	267	300	222	229	7.0	3.04
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	293	294	1.0	18.60
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	376	380	4.0	3.99
Banjawarn	RC24BJN012	357,859	6,948,392	500	-60	230	97	49	63	14.0	1.06
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	124	126	2.0	5.12
Boundary	RCDD24BDY14 5	345,435	6,972,009	495	-60	268	361	285	286	1.0	7.65
Banjawarn	RC24BJN002	355,272	6,950,514	500	-60	225	97	26	27	1.0	4.54
Banjawarn	RC24BJN012	357,859	6,948,392	500	-60	230	97	27	28	1.0	4.95
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	404	409.68	5.7	0.52
Boundary	RC24BDY150	345,123	6,972,332	495	-60	264	240	41	43	2.0	1.29
Boundary	RC24BDY152	345,128	6,972,286	495	-60	269	120	104	107	3.0	0.95
Boundary	DDRE-BDRC035	345,334	6,971,945	494	-60	266	420	241	242	1.0	1.98
Boundary	RC24BDY135	345,107	6,972,217	500	-60	224	216	90	91	1.0	1.53
Boundary	RC24BDY139	345,353	6,972,257	500	-60	226	216	114	116	2.0	1.09
Boundary	RC24BDY144	345,208	6,972,185	500	-60	222	261	240	241	1.0	2.12
Boundary	RC24BDY146	345,274	6,971,989	495	-60	263	300	239	240	1.0	1.65
Banjawarn	RC24BJN006	360,003	6,945,506	500	-59	230	85	83	84	1.0	2.41

Appendix Two | JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data from Recent Drilling at Boundary and Banjawarn Prospects (Bullseye)

Criteria	ion apply to all succeeding sections). JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Standards are inserted at regular intervals in sample batches to test laboratory performance. All Bullseye reverse circulation (RC) drilling is used to collect both a 4m composite and 1m samples in the precollar. The 4m composite are determined based on areas of known very low or background mineralisation or geological assessment at the rig. The 4m program composites are taken from the excess bagged material off the cone splitter taken every 1m. A spear sampling technique is then used to produce a 3-5kg composite sample. The 1m samples are split with a cone splitter at the drill rig to produce a 3-5kg sub-sample. These 1m samples are submitted after the results of the 4m composites are received to identify the zones of mineralisation. Diamond core was sampled using half-core where the core is cut in half down the longitudinal axis and sample intervals were determined by the geologist based on lithological contacts, with most of the sample intervals being 1 metre in length. In areas of no mineralised (negligible amounts of alteration/sulphides typically present with mineralisation) a 2m composite was submitted. The Bullseye drill program used SGS Laboratories, Kalgoorlie and Bureau Veritas Kalgoorlie for RC and diamond samples: SGS – samples crushed and milled to <75µm and assayed using fire assay (50g) with additional AAS. Bureau Veritas – samples crushed and milled to <75µm (90% pass) and assayed using fire assay (40g) with additional AAS. 			

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A Schramm 685 drill rig with a 5.5-inch hammer and a Schramm 450 with a 5.375-inch hammer is used for RC drilling. 5 3/8 hole were used to drill the RC holes. A UDR1000 rig is used to drill NQ2 diamond Core. All Bullseye holes were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™). A typical downhole survey was taken at 10m depth to the end of hole. All readings showed that down hole deviations were within acceptable limits.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC drill sample recovery averaged better than 99%.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC chips and diamond core is routinely logged (qualitatively) by a geologist, to record details of regolith (oxidation), lithology, structure, mineralization and/or veining, and alteration. All logging and sampling data are captured into a database, with appropriate validation and security features.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Most samples are dry and there is no likelihood of compromised results due to moisture. This sample technique is industry standard and is deemed appropriate for the material. All RC samples were put through a fixed cone splitter at 1m intervals with the sample reduced to between a 2kg to 5kg sample. The drilling used SGS Laboratories, Kalgoorlie and Bureau Veritas, Kalgoorlie for RC samples: SGS- samples are dried at 105° Celsius, crushed and milled to 85% passing -75µm. Assay was 50g fire assay with AAS finish for gold. Bureau Veritas- samples are dried at 105° Celsius, crushed and milled to 90% passing -75µm. Assay was 40g fire assay with AAS finish for gold.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are sent to the accredited SGS Laboratories, Kalgoorlie 50g fire assay with AAS finish for gold or the accredited Bureau Veritas laboratory in Kalgoorlie for 40g fire assay with AAS finish for gold. These methods have a lower detection limit of 0.01ppm gold. Industry-standard QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs at rate of 1 for every 20 field samples and pulp blanks at a rate of 1 for every 50 field samples. Field duplicates were collected at the rig, directly from the cyclone at a rate of one in every 50 samples for the entire program. QAQC data are routinely checked before any associated assay results are reviewed for interpretation. All assay data, including internal and external QA/QC data and control charts of standard, replicate and duplicate assay results, are communicated electronically.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols in place. The calculations of all significant intercepts (for drill holes) are routinely checked by senior management. Data verification and validation procedures undertaken included checks on collar position against design and site survey collar pick-ups by Licenced on site surveyors. Hole depths were cross-checked in the geology logs, down hole surveys, sample sheets and assay reports to ensure consistency. All down hole surveys were exposed to rigorous QAQC and drill traces were plotted in 3D for validation and assessment of global deviation trends.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used is MGA_94. The creation of the topographic surface is based on a site survey pick-up in March 2014 by GEMS (Glockner Engineering and Mining Services, licenced Australian surveyors) and again in July 2014, August 2015 and August 2017 of all drill holes and surface contour points in GDA_94. Collars drilled prior to 20 December 2023 have been picked up using Trimble RTK DGPS by Insight UAS authorised surveyors. Drillholes drilled after 20 December 2023 have been picked up using a hand GPS. These collars will be picked up using DGPS in future survey campaigns. It is the intention to use a licenced surveyor with DGPS equipment to pick up relevant collars prior to any resource calculation. All Bullseye drill holes were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™) and are routinely undertaken at ~5m intervals for the drilling.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources. The drill program adopted a standard sample length of 1.0m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Sample security	The measures taken to ensure sample security.	All RC samples were sampled as single 1m calico samples, each with a unique sample number. These calicos were collected from the drill sites in allotments of 1 tonne bulka bags. These bulka bags were loaded by Bullseye field staff and delivered to SGS Kalgoorlie or Bureau Veritas by road transport supplied by the relevant laboratory. Zones of waste a sampled as a composite sample using the spear sampling technique. If the composite returns an anomalous value, the individual 1m samples (collected and stored at the time of drilling) are submitted for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported. Keith King completed his most recent site visit and lab audit of both the SGS Kalgoorlie and Bureau Veritas Kalgoorlie laboratories in September 2023.

Section 2 Reporting of Exploration Results from Boundary and Banjawarn Prospects

(Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Bullseye Gold Prospects are 100% held by Bullseye Mining Limited (EMR-81%). The tenure is considered to be secure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical drilling was conducted between 1989 – 2005 by companies Julia Mines NL, Eagle Mining NL, Deep Yellow NL and Korab Resources Ltd.
Geology	Deposit type, geological setting and style of mineralisation.	 Geology comprises a basalt country rock and BIF with intrusions of various composition and ages. All Boundary prospects are associated with an approximately 45 degree to subvertical dipping mineralised lode (or sheets) that have formed in association with the basalt/BIF contact and Orogenic hydrothermal mineralisation typical of the WA goldfield. Gold Mineralisation is as shallow as a few metres below surface, extends to some 300m below surface and is open at depth. The weathering profile displays a surface laterite, followed by clay/saprolite weathering predominately in association with the weathered basalt. Saprock is encountered earlier in association with weathered BIF. Global fresh rock is encountered from 70m down hole, but weathering is not well advanced at Neptune and hard saprock and fresh rock are encountered in more shallow horizons.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar;	Details of significant drilling results are shown in Appendix One.

Criteria	Explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high grade top cuts have been applied. The reported significant intersections in Appendix One are above 2 gram metre intersections and allow for up to 4m of internal dilution with a lower cut trigger values of greater than 0.5g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All reported intersections are down hole lengths. True widths are unknown and vary depending on the orientation of target structures.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are included in the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant drilling results being intersections with a minimum 2 gram metre values are reported in Appendix One.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Surface geological mapping and detailed structural interpretation have helped inform the geological models.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional drilling programs are being planned across all exploration licences.