ASX Announcement & Media Release

7 October 2022

Fast Facts

ASX Code: EMR
Shares on issue: 593,500,983
Market Cap: ~A\$682 million
Cash: A\$43.0 million (at 30 June 2022)
Bullion: A\$15.8 million (at 30 June 2022)

Board & Management

Simon Lee AO, Non-Executive Chairman Morgan Hart, Managing Director Mick Evans, Executive Director Ross Stanley, Non-Executive Director Billie Slott, Non-Executive Director Michael Bowen, Non-Executive Director Jay Hughes, Non-Executive Director Mark Clements, Non-Executive Director and Company Secretary Bernie Cleary, Operations Manager

Company Highlights

- First mover in an emerging gold province in Cambodia:
- Okvau Deposit: Indicated and Inferred Mineral Resource Estimate of 1.06Moz at 1.91q/t Au;
- Project built in 2021 on time on budget and now in operation;
- Forecast economics demonstrates high grade, low cost, compelling project;
 - o Ore Reserve of 13.5Mt & 1.9g/t Au for 0.82Mozs in a single open pit with waste:ore ratio of 5.0:1:
 - LOM average annual production of 106,000ozs pa;
 - AISC US\$754/oz over LOM (at a US\$1,450 gold price assumption);
- Mineral Investment Agreement governs significant tax and duty concessions for first 5 years and includes offshore arbitration process;
- Highly credentialed gold project operational and development team:
- Significant resource growth potential
- Focussed on a net positive impact on near-mine environmental and social values by targeting strict compliance with corporate governance, international guidelines (IFC PS's) and local law by engaging and collaborating with all stakeholders.

Registered Office 1110 Hay Street West Perth WA 6005

T: +61 8 9286 6300

Significant Gold Exploration Results Continue at Okvau and Bullseye Prospects

Highlights

Okvau Gold Project (EMR 100%)

Ongoing extensional drilling at Okvau continues to deliver significant gold mineralisation, in close proximity to existing resources including:

 10m @ 14.17g/t Au from 258m including 5m @ 23.26g/t from 258m (RCDD22OKV449).

The Company has commenced an update of the Okvau Gold Project's Resource and Reserve. Recent results to be included, with the following intersections located outside the current Okvau Indicated Resource include:

- 3m @ 14.28g/t Au from 432m (DD16OKV372); (refer ASX release 28 April 2017)
- 6m @ 9.70g/t Au from 520m (DD160KV373); (refer ASX release 28 April 2017)
- 15m @ 11.92g/t Au from 143m (RC190KV390); (refer ASX release 2 July 2019)
- 8m @ 19.98g/t Au from 172m (RC190KV397); (refer ASX release 2 July 2019)
- 6m @ 11.40g/t Au from 258m (RCDD200KV424); (refer ASX release 29 January 2021)
- 3m @ 15.61g/t from 48m (RCDD220KV436); (refer ASX release 28 July 2022)
- 6m @ 14.10g/t Au from 323m (RCDD220KV444); (refer ASX release 28 July 2022)

Additionally, Emerald continues to drill at its ~60% owned (Bullseye Mining Limited) North Laverton Gold Project

Recent results from Boundary and Neptune Prospects

Significant gold mineralisation from Bullseye's RC resource exploration programme on the Boundary and Neptune Prospects demonstrate early upside potential early in the drill campaign:

- 12m @ 4.94g/t from 62m including 1m @ 9.07g/t from 69m and 1m @ 42.9g/t from 72m (RC22NPT003);
- 15m @ 2.48g/t from 108m including 1m @ 7.39g/t from 116m and 2m @ 7.79g/t from 118m (RC22NPT004);
- 13m @ 2.54g/t from 76m including 1m @ 19.30g/t from 81m (RC22BDY001);
- 32m @ 0.92g/t from 92m (RC22NPT006);
- 7m @ 3.92g/t from 63m including 2m @ 9.28g/t from 63m and 1m @ 6.67g/t from 69m (RC22NPT005);
- 16m @ 1.51g/t from 97m including 1m @ 16.00g/t from 112m (RC22BDY001);
- 18m @ 0.83g/t from 146m (RC22NPT007); and
- 8m @ 1.48g/t from 121m (RC22NPT010).

A resource update is expected by end of FY 2023, to be shortly followed by a reserve calculation. Previously completed high-grade intersections to be integrated in the resource update include:

- 5m @ 60.25g/t from 171m (WDDH8) Boundary Prospect;
- 45m @ 6.07g/t from 73m (BDRC058) Boundary Prospect;
- 22m @ 4.87g/t from 17m (NPRD0056) Neptune Prospect;
- 9m @ 9.44g/t from 82m (NPRD0078) Neptune Prospect;
- 26m @5.83g/t from 33m (STRD0016) Stirling Prospect;
- 12m @3.30g/t from 13m (HRRD0020) Hurleys Prospect;
- 14m @ 31.46g/t from 33m (LAVRD0126) Bungarra Prospect; and
- 19m @ 13.41g/t from 32m (DRP495) Bungarra Prospect.

Okvau Gold Project – Cambodia (EMR:100%)

Emerald's exploration tenements, which comprise of a combination of 100% owned granted licences and joint venture agreements now cover a combined area of 1,239 km².

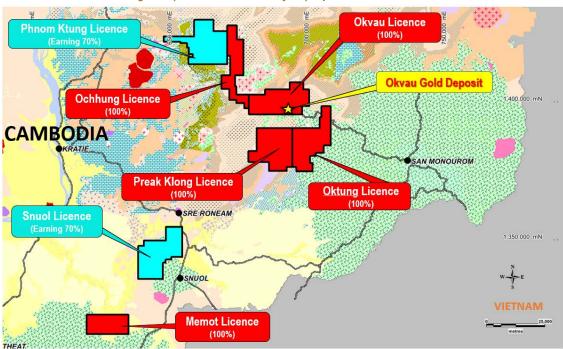


Figure 1 | Cambodian Gold Project | Exploration Licence Areas

Okvau Near Mine Exploration

Emerald continues to progress an exploration drill programme, focusing on infilling and extending the mineralisation proximally within and beyond the reserve pit shell. The drilling to date includes 23 drill holes for 7,372m (3,022m RC and 4,350m diamond) with 300m of assays pending (refer to Figure 3).

The programme identified significant mineralisation (refer Appendix One and Figure 4) outside the current Indicated resource including:

- 10m @ 14.17g/t Au from 258m with 5m @ 23.26g/t from 258m (RCDD22OKV449) (assays pending below 326m downhole);
- 1.37m @ 16.70g/t from 386m (RCDD22OKV447A); and
- 3m @ 7.18g/t from 510m (RCDD22OKV445).

Figure 2 | High grade sulphide (arsenopyrite) mineralisation in RCDD22OKV449 at 262.5m from intersection 10m @ 14.17g/t Au from 258m at Okvau Gold Project

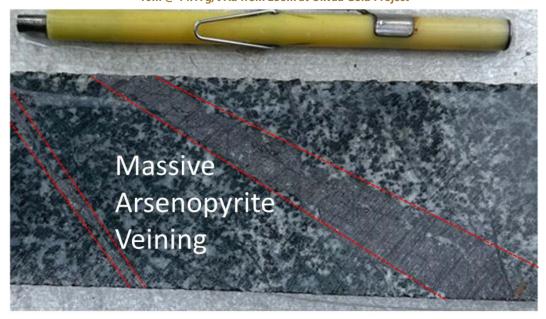
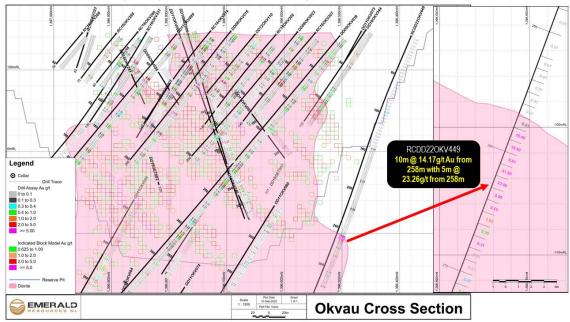



Figure 3 | Completed collars of the current 2022 Okvau Resource Drill programme, plan view

The best of the high-grade intersections are understood to be associated with the previously announced interpreted feeder zone (refer to ASX release dated 2 July 2019, 28 January 2021 and 29 July 2022). Another two holes, at a depth of 600m, have been planned to further test the depth and strike of this high-grade mineralised zone.

The Company has commenced a review of the Okvau 2017 Resource and maiden Reserve, with the recent results to be included with the ~16,000m of drilling (77 collars) completed since 2017. Other previously reported, high-grade intersections (refer Figure 5), located outside the current Indicated Resource include:

- 3m @ 14.28g/t Au from 432m (DD16OKV372); (refer ASX release 28 April 2017);
- 6m @ 9.70g/t Au from 520m (DD160KV373); (refer ASX release 28 April 2017);
- 15m @ 11.92g/t Au from 143m (RC19OKV390); (refer ASX release 2 July 2019);
- 8m @ 19.98g/t Au from 172m (RC19OKV397); (refer ASX release 2 July 2019);
- 6m @ 11.40g/t Au from 258m (RCDD200KV424); (refer ASX release 29 January 2021);
- 3m @ 15.61g/t from 48m (RCDD22OKV436); (refer ASX release 28 July 2022); and
- 6m @ 14.10g/t Au from 323m (RCDD22OKV444), (refer ASX release 28 July 2022).

RCDD220KV449

10m @ 14.17g/t Au from 258m

With 5m @ 23.26g/t from 258m

Unroute Feature Feature State Muse Feature Fe

Figure 5 | Long Section (Oblique) - Drill Hole Pierce Points of Eastern Fault Zone with Okvau Indicated Resource Block Model

Bullseye Mining Limited (EMR:59.32%)

North Laverton Gold Project Resource Drill Programme

The North Laverton Gold Project consists of 34 exploration licences (including 4 applications) and 4 mining licences controlling the entire Dingo Range greenstone belt which covers more than 800km² of tenure (refer Figure 6) and has the potential to host multiple standalone deposits or satellite deposits to supply additional ore to central mill. It includes the Boundary, Neptune, Stirling, Hurleys and Bungarra Prospects over a 6.4km greenstone strike length.

The planned ~98km resource definition drilling programme across the Boundary, Neptune, Stirling, Hurleys and Bungarra prospects, began in July 2022. Once completed will total circa 150,000m of new drilling available to estimate an updated North Laverton resource and a maiden reserve estimate.

At the time of writing, 13 collars (2,760m) have been completed drilled (refer Appendix Three) and 2,552 samples returned (with 171 assays pending). The programme commenced on the Boundary and Neptune areas and significant results returned including:

- 12m @ 4.94g/t from 62m including 1m @ 9.07g/t from 69m and 1m @ 42.90g/t from 72m (RC22NPT003);
- 15m @ 2.48g/t from 108m including 1m @ 7.39g/t from 116m and 2m @ 7.79g/t from 118m (RC22NPT004);
- 13m @ 2.54g/t from 76m including 1m @ 19.30g/t from 81m (RC22BDY001).

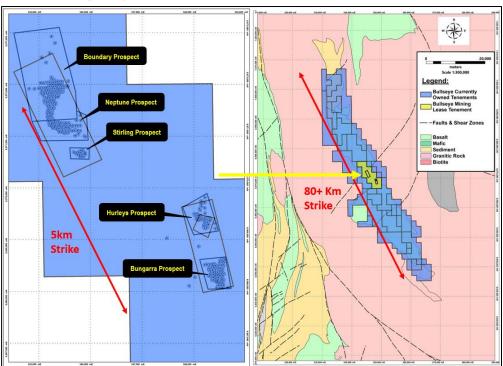


Figure 6 | North Laverton Tenement Map with the prospect locations

The initial drill results, continue to delineate high-grade mineralised structures from the Boundary and Neptune prospects (refer Figures 7 and 8). Drilling on all prospects to date has only tested to ~120m vertical depth (average) and on significant portions across all prospects, mineralisation remains open at depth (refer Figure 8, 9 and 13).

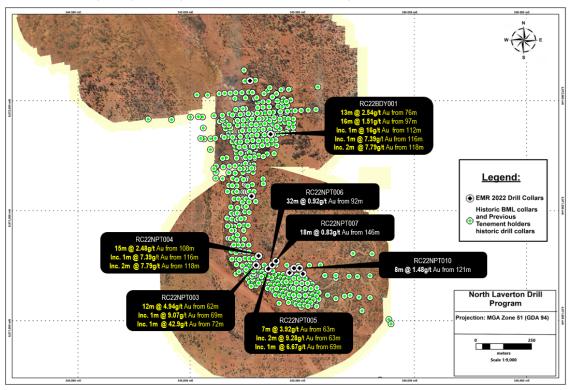
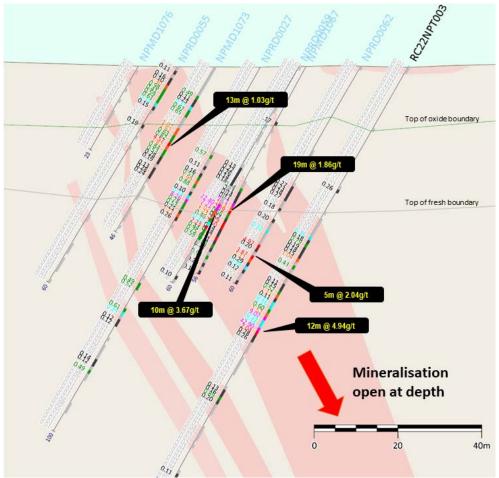



Figure 7 | Boundary and Neptune Drill collars and significant results (plan view)

Surface 500mill.

9m @ 9.36g/t.fr.7m (NPGC0045)

12m @ 4.57g/t.fr.
(NPRD0056)

400mRL

12m @ 4.54g/t.fr.
25m @ 5.24g/t.fr.
6m (NPGC0051)

300mill.

Figure 9 | Long section of Neptune with new results

North Laverton Project Historic Significant Intersections

Bullseye's current resource drill programme is designed to test the strike and down dip extension of historic significant intersections. These previous drill programmes include 84,028m (80,684m RC and 3,344m diamond) completed by Bullseye since 2014 and 45,583m of drilling completed by various previous tenement holders (34,695m RC, 4,587m diamond, 432m AC and 5,869m RAB), (refer Figures 10, 11 and 12 and Appendix Five). Drill results highlights from both programmes include:

Boundary

- 5m @ 60.25g/t from 171m (WDDH8);
- 45m @ 6.07g/t from 73m (BDRC058);
- 27m @ 9.34g/t from 153m (BDRC035);
- 53m @ 3.44g/t from 66m (WRC17) (EOH);
- 47m @ 3.42g/t from 93m (BDRD0025);
- 30m @ 5.16g/t from 151m (WDDH10);
- 19m @ 7.89g/t from 58m (BRC1002);
- 8m @ 17.14g/t from 38m (BDRC060);
- 40m @ 3.17g/t from 55m (BDRD0022);
- 27m @ 4.53g/t from 62m (BDRC014);
- 9m @13.55g/t from 42m (WDDH1);
- 30m @ 3.82g/t from 179m (BDRD0043);
- 9m @ 12.55g/t from 42m (WRC23);
- 27m @ 4.07g/t from 62m (BDRD0094).

Neptune (as reported in ASX announcement 28 July 2022):-

- 22m @ 4.87g/t from 17m (NPRD0056);
- 9m @ 9.44g/t from 82m (NPRD0078);
- 33m @ 3.82g/t from 37m (NPMD1019);
- 15m @ 6.60g/t from 67m (NPMD1007);
- 3m @ 29.85g/t from 45m (NPMD1026);
- 25m @ 5.24g/t from 0m (NPGC0053);
- 40m @ 2.98g/t from 14m (NPGC0025);
- 6m @ 14.24g/t from 37m (NPGC0018);
- 9m @ 9.36g/t from 7m (NPGC0045).

Stirling

- 26m @5.83g/t from 33m (STRD0016);
- 38m @ 2.62 g/t from 16m (SRC7);
- 31m @ 2.75g/t from 35m (STRD0008);
- 27m @ 2.30g/t from 59m (STRD0007);
- 27m @ 2.25g/t from 31m (STRD0019).

Hurleys

- 12m @3.30g/t from 13m (HRRD0020);
- 12m @ 2.77g/t from 47m (HRRD0050);
- 3m @ 9.00g/t from 62m (HRRD0062);
- 9m @2.27g/t from 64m (HRRD0032).

Bungarra

- 14m @ 31.46g/t from 33m (LAVRD0126);
- 19m @ 13.41g/t from 32m (DRP495);
- 17m @ 13.28g/t from 49m (LAVRD0132);
- 3m @ 67.37g/t from 30m (BFRC15);
- 5m @ 39.41g/t from 31m (LAVRD0133);
- 9m @ 17.02g/t from 33m (BFRC13);
- 6m @ 23.26g/t from 89m (LAVRD0054);
- 9m @ 15.45g/t from 39m (LAVRD0142);
- 14m @ 9.74g/t from 30m (LAVGW0003);9m @ 14.58g/t from 75m (LAVRD0054);
- 6m @ 19.28g/t from 53m (LAVRD0135).

Figure 10 | Plan view of Bullseye tenement holdings and location of the prospects being targeted by the recently commenced resource drill programme

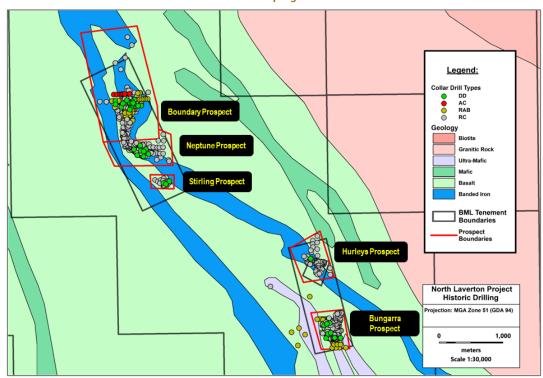
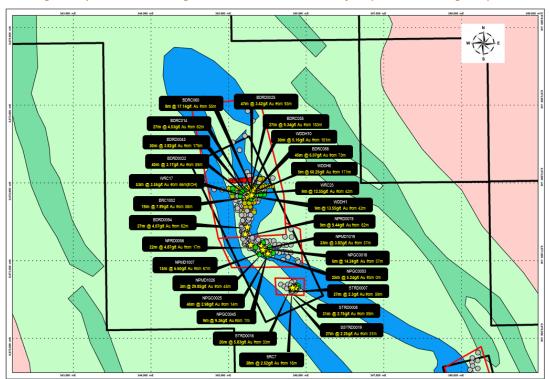



Figure 11 | Plan view of the significant results on the Boundary, Neptune and Stirling Prospects

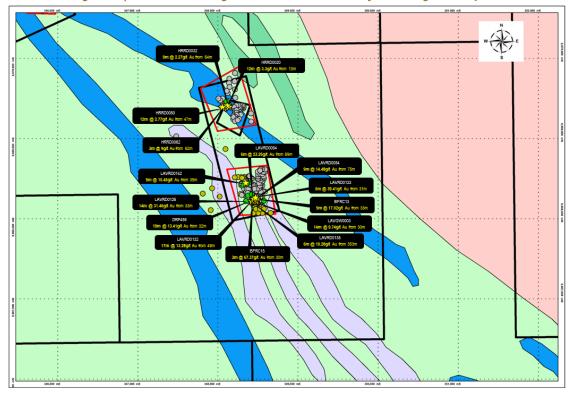
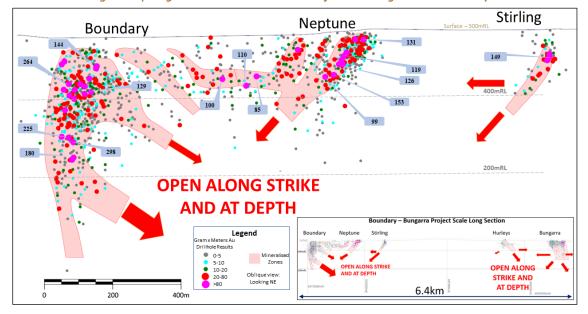



Figure 12 | Plan view of the significant results on the Hurleys and Bungarra Prospects

Other Exploration and Development

The Company continues to complete other exploration activities such as drilling programmes, and soil geochemistry programmes on its Cambodian licences. The Company remains vigilant on opportunities to expand its regional footprint in Cambodia by identifying prospective tenure and advancing discussions with potential joint venture partners. The Company continues to assess additional gold development opportunities both in Australia and internationally with the aim to create a multi asset gold producing company.

This ASX release was authorised on behalf of the Emerald Board by: Morgan Hart, Managing Director.

For further information please contact Emerald Resources NL

Morgan Hart Managing Director

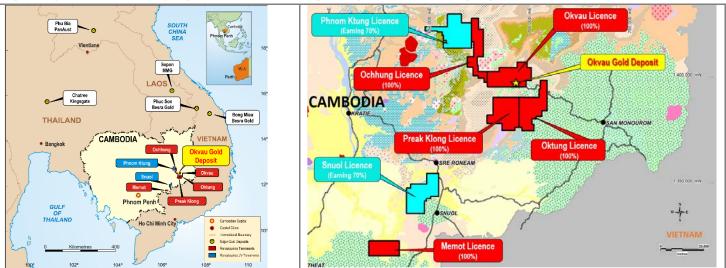
About Emerald Resources NL

Overview

Emerald is a developer and explorer of gold projects. In particular, Emerald has been focused on the development and commissioning of its most advanced project, the Okvau Gold Mine in Cambodia which saw first production in June 2021. Since commercial production commenced in September 2021, Emerald has now poured over 3,000kgs of gold bullion from its operations.

Emerald also hold a number of other projects in Cambodia which are made up of a combination of granted mining licences (100% owned by Emerald), and interests joint venture agreements. Together, Emerald's interest in its Cambodian Projects covers a combined area of 1,239km².

Emerald has a controlling interest in Bullseye Mining Limited (59.32%), an unlisted Australian public company with three Western Australian gold projects totalling in excess of 1,200km² of highly prospective gold tenure including the North Laverton Gold Project which covers in excess of 800km² of the entire Dingo Range greenstone belt.


Okvau Gold Mine

The Okvau Gold Mine Operation is the most advanced of Emerald's projects. The Okvau Gold Mine is located approximately 275km north-east of Cambodia's capital city of Phnom Penh in the province of Mondulkiri (refer Figures 14 and 15). The town of Kratie is located on the Mekong River approximately 90km to the west and the capital of Mondulkiri, Saen Monourom is located approximately 60km to the south-east.

The principal activity of the consolidated entity during the 2021 financial year was the development of Emerald's 100% owned Okvau Gold Mine. On 26 June 2021 Emerald announced its maiden gold pour after successfully commissioning the processing plant and gold room. Subsequently, commissioning activities continued on the sulphide float regrind circuit which was successfully completed in July 2021. This marked the practical completion of the Okvau Gold Mine commissioning process and commencement of normal run of mine operations.

Figure 14 | Cambodian Gold Project | Location

Table 1 | Okvau Mineral Resource Estimate

Okvau March 2022 Mineral Resource Estimate											
Meas	sured Res	ources	Indic	ated Res	ources	Infe	rred Reso	urces	То	tal Resou	rces
Tonnage (Mt)	Grade (g/t Au)	Contained Au (Koz)	Tonnage (Mt)	Grade (g/t Au)	Contained Au (Koz)	Tonnage (Mt)	Grade (g/t Au)	Contained Au (Koz)	Tonnage (Mt)	Grade (g/t Au)	Contained Au (Koz)
1.67	0.94	51	12.93	2.10	872	2.55	1.62	133	17.15	1.91	1,056

Table 2 | Okvau Ore Reserve Estimate

Okvau March 2022 Ore Reserve Estimate				
	Tonnage (Mt)	Grade (g/t Au)	Contained Au (Koz)	
Proven Ore Reserve	1.67Mt	0.94g/t Au	51koz	
Probable Ore Reserve	11.80Mt	2.02g/t Au	765koz	
Total Ore Reserve	13.48Mt	1.88g/t Au	816koz	

Forward Looking Statement

This document contains certain forward looking statements. These forward-looking statements are not historical facts but rather are based on the Company's current expectations, estimates and projections about the industry in which Emerald Resources operates, and beliefs and assumptions regarding the Company's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks"' "estimates", "potential" and similar expressions are intended to identify forward-looking statements. These statements are not guarantees of future performance and are subject to known or unknown risks, uncertainties and other factors, some of which are beyond the control of the Company, are difficult to predict and could cause actual results to differ materially from those expressed or forecasted in the forward looking statements, which reflect the view of Emerald Resources only as of the date of this announcement. The forward looking statements made in this release relate only to events as of the date on which the statements are made. Emerald Resources will not undertake any obligation to release publicly any revisions or updates to these forward-looking statements to reflect events, circumstances or unanticipated events occurring after the date of this announcement except as required by law or by any appropriate regulatory authority. This document has been prepared in compliance with the current JORC Code 2012 Edition and the ASX listing Rules.

The Company believes that is has a reasonable basis for making the forward-looking statements in this announcement, including with respect to any production targets and financial estimates, based on the information contained in this announcement. Reference is made to ASX Announcements dated 1 May 2017 and 26 November 2019. All material assumptions underpinning the production target, or the forecast financial information continue to apply and have not materially changed. 100% of the production target referred to in this announcement is based on Probable Ore Reserves.

Emerald has a highly experienced management team, undoubtedly one of the best credentialed gold development teams in Australia with a proven history of developing projects successfully, quickly and cost effectively. They are a team of highly competent mining engineers and geologists who have overseen the successful development of gold projects in developing countries such as the Bonikro Gold Project in Cote d'Ivoire for Equigold NL and more recently, Regis Resources Ltd.

Competent Persons Statements

The information in this report that relates to Exploration and Drill Results from Okvau (Appendix One) and from Bullseye Recent Drilling (Appendix Three) is based on information compiled by Mr Keith King, who is an employee to the Company and who is a Member of The Australasian Institute of Mining & Metallurgy. Mr Keith King has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Keith King has reviewed the contents of this release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

The information in this report that relates to Exploration and Drill Results from the Historic Drilling on the Boundary, Neptune, Stirling, Hurleys and Bungarra Prospects (Appendix Five) is based on information compiled by Mr Rob Cooke, who is an employee of Bullseye Mining Limited and who is a Member of The Australasian Institute of Mining & Metallurgy. Mr Rob Cooke has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Rob Cooke has reviewed the contents of this release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Resources for the Okvau Gold Deposit was prepared by EGRM Consulting Pty Ltd, Mr Brett Gossage, who is a consultant to the Company, who is a Member of the Australasian Institute of Mining & Metallurgy (AIG), and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Gossage has reviewed the contents of this news release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears. Information in this announcement that relates to Ore Reserves for the Okvau Gold Deposit is based on, and fairly represents, information and supporting documentation prepared by Mr Glenn Williamson, an independent specialist mining consultant. Mr Williamson is a Member of the Australasian Institute of Mining & Metallurgy. Mr Williamson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (or 'CP') as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Williamson has reviewed the contents of this news release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

No New Information

To the extent that announcement contains references to prior exploration results and Mineral Resource estimates, which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new material information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

Appendix One | New Drill Significant Intercepts Okvau Mine Site (>2 gram metre)

Hole Name	Local Easting	Local Northing	RL	Local Azi	Dip	End Depth	From	То	Interval	Gold g/t
DD22OKV447A	694,106	1,396,771	135	315	-70	670	298	300	2	4.19
DD22OKV447A	694,106	1,396,771	135	315	-70	670	357.3	361	3.7	0.73
DD22OKV447A	694,106	1,396,771	135	315	-70	670	386	387.37	1.37	16.70
DD22OKV447A	694,106	1,396,771	135	315	-70	670	427	428	1	1.37
DD22OKV447A	694,106	1,396,771	135	315	-70	670	433	435	2	1.79
DD22OKV447A	694,106	1,396,771	135	315	-70	670	502	503	1	0.60
DD22OKV447A	694,106	1,396,771	135	315	-70	670	534	538	4	0.90
DD22OKV447A	694,106	1,396,771	135	315	-70	670	604	607	3	2.12
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	358	360	2	5.12
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	408	409	1	2.75
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	417	418	1	1.52
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	459	460	1	2.14
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	510	513	3	7.18
including							510	511	1	19.35
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	519	536	17	0.66
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	552	560	8	0.88
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	593	594	1	0.50
RCDD22OKV445	694,129	1,396,728	159	310	-62	673	614	616	2	1.29
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	254	255	1	0.77
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	260	261	1	4.05
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	413	415	2	0.51
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	425	428	3	2.25
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	582	584	2	0.63
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	621	622	1	0.78
RCDD22OKV446	694,214	1,396,946	146	310	-71	650	626	632	6	0.52
RCDD22OKV449*	694,168	1,396,856	141	310	-67	627	258	268	10	14.17
including							258	263	5	23.26
RCDD22OKV449*	694,168	1,396,856	141	310	-67	627	274	275	1	1.52
RCDD22OKV449*	694,168	1,396,856	141	310	-67	627	282	285	3	2.92
*RCDD22OKV449 results pending below 326m										

Appendix Two | JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Standards are inserted in sample batches to test laboratory performance. For the recent Okvau RC drill, reverse circulation (RC) drilling is used to collect both a 4m composite and 1m samples in the precollar. The 4m programme composited are taken from the excess bagged material off the cone splitter taken every 1m. A spear sampling technique is then used to produce a 3-5kg composite sample. The 1m samples are split with a cone splitter at the drill rig to produce a 3-5kg subsample. These 1m samples are submitted after the results of the 4m composites are received to identify the zones of mineralisation. Diamond core was sampled using half-core where the core is cut in half down the longitudinal axis and sample intervals were determined by the geologist based on lithological contacts, with 80% of the sample intervals being 1 metre in length. In areas of no mineralised (negligible amounts of alteration/sulphides typically present with mineralisation) a 2m composite was submitted. The Exploration drill samples preparation is carried out at a commercial off-site laboratory (ALS Phnom Penh). Gold assays are conducted at ALS Vientiane, Laos utilising a 50gram subsample of 85% passing 75µm pulped sample using Fire Assay with AAS finish on and Aqua Regia digest of the lead collection button. Multielement assay is completed at ALS, Perth, Australia on a 1g pulp subsample digested by Aqua Regia and determined by ICP-AES or ICP-MS for lowest available detection for the respective element.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 A track mounted UDR650 rig is used to drill 5.5-inch RC precollar holes and a LF90 rig is used to drill NQ2 Diamond Core. Recent drilling used a REFLEX survey tool to survey hole deviation. A typical downhole survey was taken at 12m depth and then every 30m to the end of hole. Surveying of RC holes utilises 6m of stainless drill rod to negate the magnetic interference from the rod string and hammer assembly. All readings showed that down hole deviation was negligible.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	All RC 1m samples and sub-samples (pre- and post- split) are weighed at the rig, to check that there is adequate sample material for assay. Any wet or damp samples are noted and that information is recorded in the database; samples are usually dry.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All RC chips and diamond core is routinely logged (qualitatively) by a geologist, to record details of regolith (oxidation), lithology, structure, mineralization and/or veining, and alteration. In addition, the magnetic susceptibility of all samples is routinely measured. All logging and sampling data are captured into a database, with appropriate validation and security features.

Criteria	JORC Code explanation	Commentary
		Standard field data are similarly recorded (qualitatively) routinely by a geologist for all soil sampling sites.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Most samples are dry and there is no likelihood of compromised results due to moisture. All samples were prepared for assay at the NATA accredited ALS Cambodia sample preparation facility in Phnom Penh; and that facility has been inspected, at the request of Renaissance, numerous times and most recently by Mr Keith King in April 2022. Samples are dried for a minimum of 12 hours at 105°C. This sample technique is industry norm and is deemed appropriate for the material.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are sent to the NATA accredited ALS Laboratory in Vientiane, Laos, for single Aqua Regia digest with a 50g charge with an ICP-MS finish. Samples are sent to the similarly accredited ALS Lab in Brisbane, Australia and ALS Lab Perth, Australia, for multi-element ICP analysis, after partial extraction by aqua regia digest then via a combination of ICP-MS and ICP-AES. This method has a lower detection limit of 1ppm gold. Industry-standard QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs and pulp blanks into all batches - usually 1 of each for every 20 field samples. Additional blanks used are home-made from barren quarry basalt. QAQC data are routinely checked before any associated assay results are reviewed for interpretation, and any problems are investigated before results are released to the market - no issues were raised with the results reported here. All assay data, including internal and external QA/QC data and control charts of standard, replicate and duplicate assay results, are communicated electronically.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols and security measures in place. The calculations of all significant intercepts (for drill holes) are routinely checked by senior management. All field data associated with drilling and sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols and security measures in place.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Whilst, all sample locations are first surveyed with a hand-held GPS instrument (which generates relatively inaccurate RL values), not all samples were insitu. All locations are surveyed to the Indian 60 grid. Drill hole collar locations are first surveyed with a hand-held GPS instrument (which generates relatively inaccurate RL values). The locations of all holes used in Mineral Resource estimates are verified or amended by survey using a differential GPS by and external contractor with excellent accuracy in all dimensions using a local base station reference).

Criteria	JORC Code explanation	Commentary
		Down-hole surveys are routinely undertaken at 30m intervals for all types of drilling, using a single-shot or multi-shot REFLEX survey tool (operated by the driller and checked by the supervising geologist).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Drilling has been done at various orientations. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Sample security	The measures taken to ensure sample security.	 The chain of custody for all drill samples from the drill rig and soil/auger samples from the field to the ALS Sample Preparation facility in Phnom Penh is managed by Renaissance personnel. Drill samples are transported from the drill site to the Okvau exploration core farm, where they are logged and all samples are batched up for shipment to Phnom Penh. Sample submission forms are sent to the ALS Sample Prep facility in paper form (with the samples themselves) and also as an electronic copy. Delivered samples are reconciled with the batch submission form prior to the commencement of any sample preparation. ALS is responsible for shipping sample pulps from Phnom Penh to the analytical laboratories in Vientiane, Brisbane and Perth and all samples are tracked via their Global Enterprise Management System. All bulk residues are stored permanently at the ALS laboratory in Vientiane.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported. Comprehensive QAQC audits have been conducted on this project by Duncan Hackman (August 2009, February 2010 & November 2011), SRK (February 2013) and Nola Hackman (January 2014), Wolfe (July 2015). Mr Brett Gossage reviewed the data used in the Okvau Resource up to December 2016 and concluded that there are no concerns about data quality. Keith King completed his most recent site visit and lab audit of the ALS Phnom Penh facilities in 1st April 2022.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The licences are held (100%) in the name of Renaissance Minerals (Cambodia) Limited which is a wholly owned subsidiary of Emerals Resources NL. The tenure is considered to be secure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration has been completed by previou explorers; Oxiana and Oz Minerals including so sampling, geophysical data collection and drilling.
Geology	Deposit type, geological setting and style of mineralisation.	 Gold occurrences within the licences is interpreted as either a "intrusion-related gold system" or "Porphyry" related mineralisation. Gold mineralization is hosted within quart and/or sulphide veins and associated within oproximal distance to a Cretaceous age diorite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Details of significant drilling in Appendix One.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No high grade top cuts have been applied. The reported significant intersections in Appendix One are above 2 gram metri intersections and allow for up to 4m of interna dilution with a lower cut trigger values of greate than 0.5g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All reported intersections are down hole lengths True widths are unknown and vary depending or the orientation of target structures.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be	 Appropriate maps and sections are included in the body of this release.

Criteria	Explanation	Commentary
	included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant drilling results being intersections with a minimum 2 ram metre values are reported in Appendix One.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All mineralisation is associated with visible amounts of pyrrhotite or arsenopyrite. This is typical for the Okvau Deposit.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further soil sampling programmes are being planned on the identified regional targets. Additional drilling programmes are being planned across all exploration licences.

Appendix Three | New Bullseye Drill results from Neptune and Boundary Resource Drill Program (>2 gram metre)

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Neptune	RC22NPT003	345,294	6,971,252	499	-60	225	204	62	74	12	4.94
	including							69	70	1	9.07
	including							72	<i>73</i>	1	42.90
Neptune	RC22NPT004	345,305	6,971,295	500	-61	225	300	108	123	15	2.48
	including							116	117	1	7.39
	including							118	120	2	7.79
Boundary	RC22BDY001	345,359	6,971,848	495	-60	265	129	76	89	13	2.54
	including							81	82	1	19.30
Neptune	RC22NPT006	345,366	6,971,253	500	-60	225	300	92	124	32	0.92
Neptune	RC22NPT005	345,348	6,971,236	500	-60	225	300	63	70	7	3.92
	including							63	65	2	9.28
	including							69	70	1	6.67
Boundary	RC22BDY001	345,359	6,971,848	495	-60	265	129	97	113	16	1.51
	including							112	113	1	16.00
Neptune	RC22NPT007	345,383	6,971,271	500	-60	225	250	146	164	18	0.83
Neptune	RC22NPT010	345,488	6,971,239	500	-60	225	300	121	129	8	1.48
Neptune	RC22NPT008	345,443	6,971,218	500	-60	225	222	95	101	6	1.19
Neptune	RC22NPT001	345,503	6,971,213	503	-60	225	203	151	158	7	0.88
Neptune	RC22NPT008	345,443	6,971,218	500	-60	225	222	109	115	6	0.94
Neptune	RC22NPT007	345,383	6,971,271	500	-60	225	250	126	133	7	0.79
Neptune	RC22NPT007	345,383	6,971,271	500	-60	225	250	184	187	3	1.22
Neptune	RC22NPT008	345,443	6,971,218	500	-60	225	222	210	214	4	0.91
Neptune	RC22NPT008	345,443	6,971,218	500	-60	225	222	136	138	2	1.43
Neptune	RC22NPT007	345,383	6,971,271	500	-60	225	250	248	250	2	1.36
Neptune	RC22NPT009	345,463	6,971,239	500	-60	225	252	129	133	4	0.61
Neptune	RC22NPT005	345,348	6,971,236	500	-60	225	300	53	55	2	1.17
Neptune	RC22NPT010	345,488	6,971,239	500	-60	225	300	162	164	2	1.08
Boundary	RC22BDY001	345,359	6,971,848	495	-60	265	129	47	50	3	0.69
Neptune	RC22NPT004	345,305	6,971,295	500	-61	225	300	242	243	1	1.91
Neptune	RC22NPT009	345,463	6,971,239	500	-60	225	252	155	158	3	0.63
Neptune	RC22NPT009	345,463	6,971,239	500	-60	225	252	111	114	3	0.59
Boundary	RC22BDY001	345,359	6,971,848	495	-60	265	129	123	125	2	0.84
Neptune	RC22NPT009	345,463	6,971,239	500	-60	225	252	106	108	2	0.83
Neptune	RC22NPT001	345,503	6,971,213	503	-60	225	203	95	98	3	0.54
Neptune	RC22NPT008	345,443	6,971,218	500	-60	225	222	147	148	1	1.57

Appendix Four | JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data from Recent Bullseye Drilling

(Criteria in this section apply to all succeeding sections).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Standards are inserted in sample batches to test laboratory performance. All Bullseye RC samples were put through a fixed cone splitter at 1m intervals with the sample reduced to between a 2kg to 4kg sample. Bullseye drill programme used SGS Laboratories, Kalgoorlie for RC samples: SGS – samples crushed and milled to <75µm and assayed using fire assay (50g) with additional AAS.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A Schramm 685 drill rig is used to drill 5.5-inch RC holes. All Bullseye RC holes at Neptune were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™). A typical downhole survey was taken at 10m depth to the end of hole. Surveying of RC holes utilises 6m of stainless drill rod to negate the magnetic interference from the rod string and hammer assembly. All readings showed that down hole deviation was negligible.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC drill sample recovery averaged better than 99%.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All RC chips and diamond core is routinely logged (qualitatively) by a geologist, to record details of regolith (oxidation), lithology, structure, mineralization and/or veining, and alteration. All logging and sampling data are captured into a database, with appropriate validation and security features.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Most samples are dry and there is no likelihood of compromised results due to moisture. This sample technique is industry norm and is deemed appropriate for the material. All RC samples were put through a fixed cone splitter at 1m intervals with the sample reduced to between a 2kg to 4kg sample.

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	• The drilling used SGS Laboratories, Kalgoorlie for RC samples: SGS– samples dried at 105° Celsius, crushed and milled to 85% passing -75µm. Assay was 50g fire assay with AAS finish for gold.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are sent to the accredited SGS Laboratories, Kalgoorlie 50g fire assay with AAS finish for gold. This method has a lower detection limit of 0.01ppm gold. Industry-standard QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs at rate of 1 for every 20 field samples and pulp blanks at a rate of 1 for every 50 field samples. Field duplicates were collected at the rig, directly from the cyclone at a rate of one in every 50 samples for the entire programme. QAQC data are routinely checked before any associated assay results are reviewed for interpretation. All assay data, including internal and external QA/QC data and control charts of standard, replicate and duplicate assay results, are communicated electronically.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols in place. The calculations of all significant intercepts (for drill holes) are routinely checked by senior management. Data verification and validation procedures undertaken included checks on collar position against design and site survey collar pick-ups by Licensed on site surveyors. Hole depths were cross-checked in the geology logs, down hole surveys, sample sheets and assay reports to ensure consistency. All down hole surveys were exposed to rigorous QAQC and drill traces were plotted in 3D for validation and assessment of global deviation trends.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used is MGA_94. The creation of the topographic surface is based on a site survey pick-up in March 2014 by GEMS (Glockner Engineering and Mining Services, licensed Australian surveyors) and again in July 2014, August 2015 and August 2017 of all drill holes and surface contour points in GDA_94. To date the collars of holes drilled have been picked up by a hand GPS. Although it is the intention to use a licenced surveyor with DGPS equipment to pick up the collars before any resource calculation. All Bullseye RC holes at Neptune were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™) and are routinely undertaken at ~5m intervals for the drilling
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources.

Criteria	JORC Code explanation	Commentary
	Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	The drill programme adopted a standard sample length of 1.0m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Sample security	The measures taken to ensure sample security.	 All RC samples were sampled as single 1m calico samples, each with a unique sample number. These calicos were collected from the drill sites in allotments of 1 tonne bulka bags. These bulka bags were loaded by Bullseye field staff and delivered to SGS Kalgoorlie by road transport supplied by SGS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported.

Section 2 Reporting of Exploration Results from Neptune 2022 Drilling

(Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Neptune and Boundary Gold Prospects is 100% held by Bullseye Mining Limited. The tenure is considered to be secure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical drilling was conducted between 1989 – 2005 by companies Julia Mines NL, Eagle Mining NL, Deep Yellow NL and Korab Resources Ltd.
Geology	Deposit type, geological setting and style of mineralisation.	 Geology comprises a basalt country rock and BIF. The Neptune deposit is associated with an approximately 45 degree plunging mineralised lode (or sheets) that have formed in association with the basalt/BIF contact, a large antiform structure and a large cross cutting structure. Gold Mineralisation is as shallow as a few metres below surface, extends to some 100m below surface and is open at depth. The weathering profile displays a surface laterite, followed by clay/saprolite weathering predominately in association with the weathered basalt. Saprock is encountered earlier in association with weathered BIF. Global fresh rock is encountered from 70m down hole, but weathering is not well advanced at Neptune and hard saprock and fresh rock are encountered in more shallow horizons.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Details of significant drilling results are shown in Appendix Three.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high grade top cuts have been applied. The reported significant intersections in Appendix Three are above 2 gram metre intersections and allow for up to 4m of internal dilution with a lower cut trigger values of greater than 0.5g/t.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	All reported intersections are down hole lengths. True widths are unknown and vary depending on the orientation of target structures. Page 22 of 51.

Criteria	Explanation	Commentary
widths and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and sections are included in the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant drilling results being intersections with a minimum 2 gram metre values are reported in Appendix Three.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Surface geological mapping and detailed structural interpretation have helped inform the geological models.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional drilling programmes are being planned across all exploration licences.

Appendix Five | Historic Bullseye Drill results (excluding Neptune Prospect as previously reported in July 2022 ASX announcement) (>2 gram metre)

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Stirling	DRC10	345,765	6,970,693	507	-60	90	159	98	103	5	0.58
Stirling	SRC5	345,876	6,970,669	506	-60	180	94	40	54	14	1.58
Stirling	SRC5	345,876	6,970,669	506	-60	180	94	67	79	12	0.93
Stirling	SRC7	345,837	6,970,645	508	-90	0	81	16	54	38	2.62
Stirling	SRC7	345,837	6,970,645	508	-90	0	81	73	77	4	0.62
Stirling	SRC8	345,813	6,970,670	507	-90	0	107	56	76	20	1.46
Stirling	SRC9	345,765	6,970,693	507	-90	0	126	83	95	12	0.70
Stirling	STRD0001	345,817	6,970,689	507	-60	270	129	74	78	4	1.53
Stirling	STRD0001	345,817	6,970,689	507	-60	270	129	62	66	4	1.22
Stirling	STRD0002	345,842	6,970,689	506	-60	270	109	90	100	10	1.62
Stirling	STRD0003	345,839	6,970,700	506	-60	270	119	96	108	12	1.52
Stirling	STRD0004	345,837	6,970,669	507	-60	270	129	55	67	12	0.77
Stirling	STRD0007	345,862	6,970,670	506	-60	270	134	59	86	27	2.30
Stirling	STRD0007	345,862	6,970,670	506	-60	270	134	38	45	7	0.59
Stirling	STRD0008	345,862	6,970,652	507	-60	270	119	35	66	31	2.75
Stirling	STRD0009	345,866	6,970,635	508	-60	270	124	41	46	5	0.56
Stirling	STRD0013	345,812	6,970,634	508	-60	270	129	39	40	1	4.12
Stirling	STRD0014	345,803	6,970,647	508	-60	86	75	58	75	17	2.26
Stirling	STRD0014	345,803	6,970,647	508	-60	86	75	38	47	9	1.70
Stirling	STRD0014	345,803	6,970,647	508	-60	86	75	27	28	1	3.83
Stirling	STRD0015	345,817	6,970,634	508	-60	90	60	47	54	7	1.76
Stirling	STRD0016	345,816	6,970,646	508	-60	90	60	33	59	26	5.83
Stirling	STRD0017	345,825	6,970,634	508	-60	90	60	41	58	17	1.63
Stirling	STRD0018	345,826	6,970,646	508	-60	90	60	42	44	2	1.24
Stirling	STRD0019	345,825	6,970,656	507	-60	90	60	31	58	27	2.25
Stirling	STRD0020	345,816	6,970,664	507	-60	90	60	38	60	22	1.86
Stirling	STRD0021	345,843	6,970,669	507	-90	0	30	21	23	2	24.04
Stirling	STRD0024	345,843	6,970,662	507	-90	0	30	11	18	7	1.67
Stirling	STRD0024	345,843	6,970,662	507	-90	0	30	23	30	7	1.04
Stirling	STRD0026	345,843	6,970,691	506	-60	100	100	76	89	13	1.25
Stirling	STRD0029	345,872	6,970,652	507	-60	270	90	60	73	13	1.13
Stirling	STRD0031	345,854	6,970,649	507	-60	90	70	32	44	12	1.06
Stirling	STRD0031	345,854	6,970,649	507	-60	90	70	17	24	7	1.65
Stirling	STRD0032	345,848	6,970,649	507	-60	270	90	36	44	8	3.38
Stirling	STRD0040	345,872	6,970,631	508	-60	290	85	42	63	21	1.51
Stirling	STRD0044	345,811	6,970,720	506	-60	270	140	91	96	5	1.22
Stirling	STRD0046	345,853	6,970,658	507	-60	90	60	11	21	10	0.57
Stirling	STRD0048	345,835	6,970,644	508	-60	0	30	16	30	14	0.73
Stirling	STRGW0001	345,801	6,970,682	507	-90	0	91	59	82	23	1.22
Stirling	STRGW0002	345,828	6,970,650	508	-90	0	88	30	54	24	1.19
Stirling	STRGW0002	345,828	6,970,650	508	-90	0	88	21	22	1	3.35
Hurleys	HRRD0011	348,223	6,969,395	510	-60	225	120	13	14	1	6.82
Hurleys	HRRD0016	348,114	6,969,395	511	-60	45	120	66	67	1	5.41

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Hurleys	HRRD0018	348,143	6,969,397	511	-60	45	120	7	13	6	2.94
Hurleys	HRRD0018	348,143	6,969,397	511	-60	45	120	63	66	3	1.75
Hurleys	HRRD0020	348,134	6,969,399	511	-60	45	120	13	25	12	3.30
Hurleys	HRRD0020	348,134	6,969,399	511	-60	45	120	51	55	4	2.17
Hurleys	HRRD0020	348,134	6,969,399	511	-60	45	120	66	76	10	0.64
Hurleys	HRRD0022	348,134	6,969,398	511	-60	225	126	39	41	2	1.63
Hurleys	HRRD0024	348,154	6,969,396	511	-60	225	120	18	28	10	1.61
Hurleys	HRRD0026	348,141 348,115	6,969,398	511	-60	225	120	51	53	2	1.14 2.24
Hurleys Hurleys	HRRD0028 HRRD0028	348,115	6,969,396 6,969,396	511 511	-60 -60	46 46	138 138	30 15	33 17	3	1.05
Hurleys	HRRD0020	348,112	6,969,417	511	-60	225	132	65	66	1	6.52
Hurleys	HRRD0030	348,112	6,969,417	511	-60	225	132	91	96	5	1.16
Hurleys	HRRD0032	348,116	6,969,415	511	-60	45	120	64	73	9	2.27
Hurleys	HRRD0033	348,255	6,969,417	510	-60	225	129	83	84	1	2.43
Hurleys	HRRD0036	348,133	6,969,435	512	-60	45	120	66	67	1	2.70
Hurleys	HRRD0037	348,203	6,969,392	510	-60	225	129	26	33	7	0.50
Hurleys	HRRD0042	348,130	6,969,467	513	-60	45	138	25	31	6	2.07
Hurleys	HRRD0044	348,102	6,969,438	512	-60	225	120	111	114	3	0.67
Hurleys	HRRD0046	348,118	6,969,455	513	-60	225	132	106	108	2	7.32
Hurleys	HRRD0048	348,074	6,969,415	511	-60	225	120	80	81	1	3.67
Hurleys	HRRD0048	348,074	6,969,415	511	-60	225	120	44	45	1	2.38
Hurleys	HRRD0050	348,056	6,969,393	510	-60	225	120	47	59	12	2.77
Hurleys	HRRD0050	348,056	6,969,393	510	-60	225	120	103	113	10	1.44
Hurleys	HRRD0050	348,056	6,969,393	510	-60	225	120	71	72	1	2.18
Hurleys	HRRD0050	348,056	6,969,393	510	-60	225	120	38	39	1	2.10
Hurleys	HRRD0051	348,253	6,969,299	508	-60	225	120	25	32	7	1.11
Hurleys	HRRD0052	348,076	6,969,392	511	-60	225	120	44	46	2	3.78
Hurleys	HRRD0052	348,076	6,969,392	511	-60	225	120	88	89	1	2.98
Hurleys	HRRD0056	348,092	6,969,392	511	-60	225	132	97	98	1	5.48
Hurleys	HRRD0056	348,092	6,969,392	511	-60	225	132	75	79	4	0.93
Hurleys	HRRD0058	348,056	6,969,415	511	-60	225	120	92	97	5	2.40
Hurleys	HRRD0058	348,056	6,969,415	511	-60	225	120	41	50	9	0.90
Hurleys	HRRD0060	348,091	6,969,394	511	-60	45	138	94	97	3	0.70
Hurleys	HRRD0062	348,055	6,969,394	511	-60	45	120	62	65	3	9.00
Hurleys	HRRD0062	348,055	6,969,394	511	-60	45	120	42	43	1	7.19
Hurleys	HRRD0064 HRRD0064	348,075 348,075	6,969,394 6,969,394	511 511	-60	45	126	81 112	87	6	0.79
Hurleys	HRRD0066	348,074	6,969,417	511	-60 -60	45 45	126 126	108	113 111	3	2.61 5.46
Hurleys Hurleys	HRRD0068	348,096	6,969,417	513	-60	45	126	53	55	2	1.17
Hurleys	HRRD0068	348,096	6,969,415	513	-60	45	126	60	61	1	2.24
Hurleys	HRRD0072	348,082	6,969,437	512	-60	45	120	79	83	4	1.08
Hurleys	HRRD0072	348,082	6,969,437	512	-60	45	120	68	70	2	1.62
Hurleys	HRRD0072	348,101	6,969,376	510	-60	45	120	66	70	4	2.47
Hurleys	HRRD0078	348,101	6,969,376	510	-60	45	120	102	114	12	0.57
Hurleys	HRRD0078	348,101	6,969,376	510	-60	45	120	89	90	1	2.18

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Hurleys	HRRD0084	348,073	6,969,486	513	-60	225	120	31	36	5	0.79
Hurleys	HRRD0084	348,073	6,969,486	513	-60	225	120	53	54	1	2.20
Hurleys	HRRD0086	348,092	6,969,467	513	-60	225	120	95	97	2	1.66
Hurleys	HRRD0092	348,028	6,969,477	513	-60	225	120	119	120	1	15.00
Bungarra	BFDDH1	348,349	6,968,221	505	-60	90	213	180.2	184.3	4	3.86
Bungarra	BFDDH2	348,575	6,968,225	503	-60	270	216	209	216	7	0.59
Bungarra	BFDDH2	348,575	6,968,225	503	-60	270	216	183	184	1	2.65
Bungarra	BFDDH3 BFDDH3	348,318 348,318	6,968,421	505 505	-60 -60	90	168 168	110 70	114 78	8	22.13
Bungarra Bungarra	BFDDH3	348,318	6,968,421 6,968,421	505	-60	90	168	63	64	1	9.37
Bungarra	BFRC017	348,481	6,968,196	504	-90	0	63	24	31	7	9.39
Bungarra	BFRC018	348,454	6,968,248	504	-90	0	67	59	66	7	0.61
Bungarra	BFRC018	348,454	6,968,248	504	-90	0	67	35	42	7	0.58
Bungarra	BFRC019	348,435	6,968,249	504	-90	0	66	29	36	7	2.26
Bungarra	BFRC021	348,430	6,968,271	503	-90	0	64	41	47	6	2.33
Bungarra	BFRC021	348,430	6,968,271	503	-90	0	64	53	59	6	0.52
Bungarra	BFRC022	348,411	6,968,271	504	-90	0	70	44	46	2	6.57
Bungarra	BFRC026	348,380	6,968,302	505	-90	0	74	39	40	1	5.92
Bungarra	BFRC029	348,388	6,968,351	504	-90	0	52	30	42	12	0.58
Bungarra	BFRC029	348,388	6,968,351	504	-90	0	52	47	52	5	1.15
Bungarra	BFRC029	348,388	6,968,351	504	-90	0	52	16	20	4	0.68
Bungarra	BFRC030	348,370	6,968,352	504	-90	0	58	56	58	2	5.51
Bungarra	BFRC031	348,349	6,968,350	504	-90	0	80	62	65	3	9.36
Bungarra	BFRC034	348,409	6,968,398	503	-90	0	59	16	23	7	4.21
Bungarra	BFRC034	348,409	6,968,398	503	-90	0	59	29	44	15	1.02
Bungarra	BFRC034	348,409	6,968,398	503	-90	0	59	51	59	8	0.98
Bungarra	BFRC036	348,389	6,968,447	503	-90	0	72	16	27	11	1.34
Bungarra	BFRC036	348,389	6,968,447	503	-90	0	72	44	56	12	1.12
Bungarra	BFRC036	348,389	6,968,447	503	-90	0	72	66	68	2	1.43
Bungarra	BFRC036	348,389	6,968,447	503	-90	0	72	36	39	3	0.75
Bungarra	BFRC037	348,390	6,968,471	503	-90	0	84	33	41	8	0.97
Bungarra	BFRC037	348,390	6,968,471	503	-90	0	84	47	48	1	5.35
Bungarra	BFRC037	348,390	6,968,471	503	-90	0	84	20	24	4	0.86
Bungarra	BFRC1	348,432	6,968,321	503	-60	269	71	57	68	11	1.21
Bungarra	BFRC10	348,476	6,968,248	503	-60	268	111	82	84	2	6.89
Bungarra	BFRC10	348,476	6,968,248	503 504	-60	268 90	111 86	50 70	55 72	5 3	0.70 3.00
Bungarra Bungarra	BFRC11 BFRC13	348,402 348,422	6,968,222 6,968,224	504	-60 -60	88	136	33	73 42	9	17.02
Bungarra	BFRC14	348,446	6,968,266	503	-60	182	111	40	53	13	2.40
Bungarra	BFRC15	348,451	6,968,223	504	-90	0	60	30	33	3	67.37
Bungarra	BFRC13	348,424	6,968,349	504	-60	274	88	75	84	9	2.66
Bungarra	BFRC2	348,424	6,968,349	504	-60	274	88	46	48	2	2.27
Bungarra	BFRC3	348,424	6,968,373	503	-60	272	80	17	19	2	1.02
Bungarra	BFRC5	348,461	6,968,425	503	-60	271	76	35	45	10	2.11
Bungarra	BFRC7	348,482	6,968,218	504	-60	268	113	36	43	7	8.34

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	BFRC8	348,492	6,968,195	504	-60	268	132	26	50	24	1.99
Bungarra	DRC18	348,348	6,968,421	504	-60	90	153	63	85	22	1.11
Bungarra	DRC18	348,348	6,968,421	504	-60	90	153	46	58	12	0.92
Bungarra	DRC19	348,349	6,968,396	504	-60	90	188	151	153	2	2.52
Bungarra	DRC20	348,499	6,968,375	503	-60	90	128	52	62	10	4.61
Bungarra	DRC20	348,499	6,968,375	503	-60	90	128	77	78	1	17.44
Bungarra	DRP494	348,453	6,968,221	503	-60	270	64	45	53	8	1.04
Bungarra	DRP494 DRP494	348,453 348,453	6,968,221	503 503	-60 -60	270 270	64 64	17 60	20 61	3	1.52 4.14
Bungarra Bungarra	DRP494 DRP495	348,473	6,968,221 6,968,221	503	-60	270	53	32	51	19	13.41
Bungarra	DRP496	348,447	6,968,271	503	-60	270	60	47	60	13	1.52
Bungarra	DRP615	348,370	6,968,421	503	-60	90	62	35	40	5	1.48
Bungarra	DRP615	348,370	6,968,421	503	-60	90	62	56	62	6	0.97
Bungarra	DRP616	348,330	6,968,420	503	-60	90	68	60	64	4	1.41
Bungarra	DRP660	348,453	6,968,196	503	-90	0	48	22	26	4	3.04
Bungarra	DRP660	348,453	6,968,196	503	-90	0	48	8	12	4	0.82
Bungarra	DRP661	348,503	6,968,196	503	-90	0	54	16	20	4	2.90
Bungarra	DRP668	348,524	6,968,121	503	-90	0	43	32	38	6	0.66
Bungarra	DRP679	348,371	6,968,396	503	-90	0	58	48	57	9	0.54
Bungarra	DRP680	348,396	6,968,396	503	-90	0	58	28	38	10	2.72
Bungarra	DRP680	348,396	6,968,396	503	-90	0	58	48	50	2	1.62
Bungarra	DRP681	348,421	6,968,396	503	-90	0	57	52	54	2	1.32
Bungarra	DRP682	348,446	6,968,396	503	-90	0	56	28	40	12	6.25
Bungarra	DRP682	348,446	6,968,396	503	-90	0	56	48	56	8	1.02
Bungarra	FF-47-RB	348,340	6,968,502	500	-60	90	40	24	30	6	1.00
Bungarra	FF-50-RB	348,457	6,968,479	500	-60	90	40	30	36	6	1.33
Bungarra	FF-53-RB	348,360	6,968,294	500	-60	90	40	12	18	6	3.00
Bungarra	LAVGW0001	348,396	6,968,424	503	-90	0	88	41	54	13	0.54
Bungarra	LAVGW0001	348,396	6,968,424	503	-90	0	88	16	19	3	1.23
Bungarra	LAVGW0001	348,396	6,968,424	503	-90	0	88	26	27	1	2.68
Bungarra	LAVGW0002	348,478	6,968,216	504	-90	0	57	49	53	4	23.78
Bungarra	LAVGW0003	348,446	6,968,243	503	-90	0	53	30	44	14	9.74
Bungarra	LAVGW0003	348,446	6,968,243	503	-90	0	53	50	52	2	1.61
Bungarra	LAVRD0001	348,401	6,968,380	503	-60	225	178	88	94	6	1.34
Bungarra	LAVRD0001	348,401	6,968,380	503	-60	225	178	159	167	8	0.77
Bungarra	LAVRD0001 LAVRD0002	348,401	6,968,380	503 504	-60	225	178 129	53	55	6	1.14
Bungarra	LAVRD0002 LAVRD0003	348,372 348,418	6,968,379 6,968,379	503	-60 -60	225 225	188	17 85	23 89	4	1.37 3.91
Bungarra Bungarra	LAVRD0003	348,418	6,968,379	503	-60	225	188	58	59	1	5.04
Bungarra	LAVRD0003	348,418	6,968,379	503	-60	225	188	40	42	2	2.01
Bungarra	LAVRD0003	348,418	6,968,379	503	-60	225	188	47	49	2	1.21
Bungarra	LAVRD0003	348,398	6,968,398	503	-60	225	133	30	33	3	6.57
Bungarra	LAVRD0004	348,398	6,968,398	503	-60	225	133	56	67	11	1.49
Bungarra	LAVRD0004	348,398	6,968,398	503	-60	225	133	39	44	5	1.72
Bungarra	LAVRD0001	348,413	6,968,418	503	-60	225	149	78	84	6	5.90

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	LAVRD0005	348,413	6,968,418	503	-60	225	149	48	57	9	0.70
Bungarra	LAVRD0005	348,413	6,968,418	503	-60	225	149	21	25	4	1.54
Bungarra	LAVRD0006	348,433	6,968,378	503	-60	225	169	163	168	5	7.10
Bungarra	LAVRD0006	348,433	6,968,378	503	-60	225	169	129	136	7	2.38
Bungarra	LAVRD0006	348,433	6,968,378	503	-60	225	169	33	34	1	7.57
Bungarra	LAVRD0006	348,433	6,968,378	503	-60	225	169	46	49	3	1.74
Bungarra	LAVRD0006	348,433	6,968,378	503	-60	225	169	3	5	2	1.02
Bungarra	LAVRD0007	348,437	6,968,440	503	-60	225	78	33	46	13	1.11
Bungarra	LAVRD0007	348,437	6,968,440	503	-60	225	78	23	25	2	1.69
Bungarra	LAVRD0008	348,466	6,968,442	502	-60	225	188	53	54	1	4.77
Bungarra	LAVRD0008	348,466	6,968,442	502	-60	225	188	179	183	4	0.99
Bungarra	LAVRD0008	348,466	6,968,442	502	-60	225	188	124	128	4	0.53
Bungarra	LAVRD0009	348,416	6,968,460	503	-60	225	178	102	110	8	10.09
Bungarra	LAVRD0010	348,416	6,968,460	503	-60	225	178	21 4	70	49	1.18
Bungarra Bungarra	LAVRD0010 LAVRD0010	348,395 348,395	6,968,463 6,968,463	503 503	-61 -61	225 225	158 158	15	6 21	6	3.50 0.77
Bungarra	LAVRD0010	348,395	6,968,463	503	-61	225	158	134	138	4	1.11
Bungarra	LAVRD0010	348,395	6,968,463	503	-61	225	158	35	39	4	0.75
Bungarra	LAVRD0010	348,445	6,968,239	504	-61	225	93	41	44	3	1.10
Bungarra	LAVRD0012	348,458	6,968,237	503	-60	225	98	32	45	13	4.37
Bungarra	LAVRD0013	348,469	6,968,238	503	-60	225	118	33	38	5	9.60
Bungarra	LAVRD0013	348,469	6,968,238	503	-60	225	118	68	74	6	1.31
Bungarra	LAVRD0016	348,447	6,968,257	503	-61	225	88	42	48	6	2.55
Bungarra	LAVRD0016	348,447	6,968,257	503	-61	225	88	33	37	4	1.12
Bungarra	LAVRD0017	348,447	6,968,279	503	-61	225	88	47	48	1	7.22
Bungarra	LAVRD0017	348,447	6,968,279	503	-61	225	88	56	57	1	2.36
Bungarra	LAVRD0019	348,427	6,968,300	504	-60	225	88	51	54	3	1.75
Bungarra	LAVRD0020	348,404	6,968,293	504	-61	225	93	41	49	8	10.88
Bungarra	LAVRD0021	348,396	6,968,319	504	-60	225	78	52	57	5	3.88
Bungarra	LAVRD0021	348,396	6,968,319	504	-60	225	78	69	70	1	11.20
Bungarra	LAVRD0021	348,396	6,968,319	504	-60	225	78	41	42	1	5.57
Bungarra	LAVRD0022	348,448	6,968,320	503	-60	225	134	54	60	6	0.69
Bungarra	LAVRD0024	348,428	6,968,341	504	-60	225	93	88	93	5	3.02
Bungarra	LAVRD0024	348,428	6,968,341	504	-60	225	93	71	72	1	4.25
Bungarra	LAVRD0024	348,428	6,968,341	504	-60	225	93	48	53	5	0.56
Bungarra	LAVRD0025	348,415	6,968,342	504	-60	225	93	23	24	1	3.00
Bungarra	LAVRD0025	348,415	6,968,342	504	-60	225	93	63	66	3	0.67
Bungarra	LAVRD0026	348,466	6,968,379	503	-60	225	203	81	84	3	0.85
Bungarra	LAVRD0029	348,468	6,968,339	503	-60	225	209	83	94	11	1.69
Bungarra	LAVRD0029	348,468	6,968,339	503	-60	225	209	202	203	1 -	6.22
Bungarra	LAVRD0029	348,468	6,968,339	503	-60	225	209	104	111	7	0.59
Bungarra	LAVRD0029	348,468	6,968,339	503	-60	225	209	157	164	7	0.55
Bungarra	LAVRD0029	348,468	6,968,339	503	-60	225	209	71	74	3	1.27
Bungarra	LAVRD0030	348,509	6,968,277	502	-60	225	241	178	194	16	1.34
Bungarra	LAVRD0031	348,534	6,968,276	502	-60	225	264	182	210	28	1.33

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	LAVRD0031	348,534	6,968,276	502	-60	225	264	164	176	12	1.03
Bungarra	LAVRD0031	348,534	6,968,276	502	-60	225	264	250	255	5	0.53
Bungarra	LAVRD0032	348,471	6,968,280	503	-60	225	164	74	80	6	1.56
Bungarra	LAVRD0034	348,381	6,968,420	504	-60	225	126	52	64	12	6.59
Bungarra	LAVRD0034	348,381	6,968,420	504	-60	225	126	38	44	6	0.50
Bungarra	LAVRD0035	348,378	6,968,401	504	-60	225	126	70	74	4	1.13
Bungarra	LAVRD0036	348,396	6,968,437	504	-61	225	126	37	48	11	2.02
Bungarra	LAVRD0036	348,396	6,968,437	504	-61	225	126	56	69	13	0.83
Bungarra	LAVRD0036	348,396	6,968,437	504	-61	225	126	29	32	3	2.28
Bungarra	LAVRD0036	348,396	6,968,437	504	-61	225	126	19	24	5	1.23
Bungarra	LAVRD0037	348,423	6,968,436	503	-60	225	126	11	33	22	1.01
Bungarra	LAVRD0037	348,423	6,968,436	503	-60	225	126	47	55	8	1.41
Bungarra	LAVRD0038 LAVRD0038	348,379 348,379	6,968,439 6,968,439	504 504	-60 -60	225 225	126 126	48 34	55 37	7	5.86 4.91
Bungarra Bungarra	LAVRD0038	348,379	6,968,439	504	-60	225	126	25	26	1	7.92
Bungarra	LAVRD0038	348,379	6,968,439	504	-60	225	126	69	72	3	2.47
Bungarra	LAVRD0053	348,415	6,968,398	503	-60	225	81	30	48	18	1.14
Bungarra	LAVRD0053	348,415	6,968,398	503	-60	225	81	11	25	14	0.94
Bungarra	LAVRD0053	348,489	6,968,235	503	-60	225	101	89	95	6	23.26
Bungarra	LAVRD0054	348,489	6,968,235	503	-60	225	101	75	84	9	14.58
Bungarra	LAVRD0054	348,489	6,968,235	503	-60	225	101	48	56	8	12.38
Bungarra	LAVRD0056	348,456	6,968,279	503	-60	225	81	46	48	2	15.39
Bungarra	LAVRD0056	348,456	6,968,279	503	-60	225	81	57	58	1	2.32
Bungarra	LAVRD0057	348,433	6,968,281	503	-60	225	81	47	49	2	1.77
Bungarra	LAVRD0079	348,406	6,968,470	503	-60	225	81	18	27	9	2.11
Bungarra	LAVRD0079	348,406	6,968,470	503	-60	225	81	36	42	6	1.98
Bungarra	LAVRD0079	348,406	6,968,470	503	-60	225	81	75	81	6	1.87
Bungarra	LAVRD0079	348,406	6,968,470	503	-60	225	81	63	70	7	1.51
Bungarra	LAVRD0080	348,417	6,968,472	503	-60	225	81	51	54	3	7.13
Bungarra	LAVRD0080	348,417	6,968,472	503	-60	225	81	21	23	2	1.04
Bungarra	LAVRD0081	348,426	6,968,472	503	-60	225	81	51	68	17	0.96
Bungarra	LAVRD0081	348,426	6,968,472	503	-60	225	81	74	79	5	1.76
Bungarra	LAVRD0082	348,428	6,968,461	503	-60	225	81	30	34	4	8.13
Bungarra	LAVRD0082	348,428	6,968,461	503	-60	225	81	46	50	4	0.50
Bungarra	LAVRD0083	348,458	6,968,258	503	-60	225	81	37	41	4	18.10
Bungarra	LAVRD0084	348,450	6,968,218	504	-60	225	81	25	37	12	0.51
Bungarra	LAVRD0085	348,460	6,968,217	504	-60	225	81	29	31	2	2.83
Bungarra	LAVRD0087	348,471	6,968,217	504	-60	225	81	39	45	6	3.11
Bungarra	LAVRD0087	348,471	6,968,217	504	-60	225	81	28	34	6	1.04
Bungarra	LAVRD0089	348,482	6,968,217	504	-60	225	81	28	47	19	4.54
Bungarra	LAVRD0090	348,472	6,968,194	504	-61	225	81	27	29	2	1.47
Bungarra	LAVRD0091	348,491	6,968,217	504	-60	225	81	37	39	2	5.31
Bungarra	LAVRD0091	348,491	6,968,217	504	-60	225	81	73	74	1	2.34
Bungarra	LAVRD0093	348,505	6,968,216	504	-60	225	81	50	56	6	6.65
Bungarra	LAVRD0093	348,505	6,968,216	504	-60	225	81	74	75	1	2.79

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	LAVRD0096	348,423	6,968,214	504	-60	90	81	24	26	2	4.56
Bungarra	LAVRD0096	348,423	6,968,214	504	-60	90	81	53	54	1	2.64
Bungarra	LAVRD0098	348,446	6,968,289	503	-60	270	80	72	79	7	1.19
Bungarra	LAVRD0098	348,446	6,968,289	503	-60	270	80	46	48	2	3.23
Bungarra	LAVRD0101	348,394	6,968,304	504	-58	225	65	36	47	11	0.71
Bungarra	LAVRD0103	348,398	6,968,345	504	-60	225	80	64	66	2	20.78
Bungarra	LAVRD0103	348,398	6,968,345	504	-60	225	80	22	25	3	5.00
Bungarra	LAVRD0104	348,407	6,968,344	504	-60	225	80	54	60	6	0.94
Bungarra	LAVRD0105	348,319	6,968,434	505	-60	90	120	71	78	7	2.75
Bungarra	LAVRD0105	348,319	6,968,434	505	-60	90	120	34	35	1	4.58
Bungarra	LAVRD0109	348,461	6,968,205	504	-60	225	83	27	33	6	0.56
Bungarra	LAVRD0110	348,471	6,968,204	504	-60	225	83	26 60	36	10	0.92
Bungarra Bungarra	LAVRD0111 LAVRD0111	348,356 348,356	6,968,295 6,968,295	505 505	-60 -60	45 45	228 228	178	70 195	10 17	8.38 0.53
	LAVRD0111	348,356	6,968,295	505	-60	45	228	221	228	7	0.33
Bungarra Bungarra	LAVRD0111	348,347	6,968,296	505	-60	45	185	63	70	7	1.59
Bungarra	LAVRD0112	348,347	6,968,296	505	-60	45	185	133	138	5	0.66
Bungarra	LAVRD0112	348,347	6,968,296	505	-60	45	185	80	83	3	0.89
Bungarra	LAVRD0112	348,347	6,968,296	505	-60	45	185	145	149	4	0.52
Bungarra	LAVRD0115	348,481	6,968,205	504	-60	225	84	45	47	2	4.54
Bungarra	LAVRD0115	348,481	6,968,205	504	-60	225	84	25	33	8	0.83
Bungarra	LAVRD0116	348,489	6,968,204	504	-60	225	84	28	34	6	6.60
Bungarra	LAVRD0116	348,489	6,968,204	504	-60	225	84	76	78	2	1.92
Bungarra	LAVRD0117	348,499	6,968,205	504	-60	225	84	29	35	6	0.66
Bungarra	LAVRD0118	348,517	6,968,236	503	-60	225	196	171	173	2	7.05
Bungarra	LAVRD0118	348,517	6,968,236	503	-60	225	196	64	66	2	2.01
Bungarra	LAVRD0119	348,526	6,968,236	503	-60	225	275	65	86	21	1.16
Bungarra	LAVRD0119	348,526	6,968,236	503	-60	225	275	186	188	2	2.76
Bungarra	LAVRD0119	348,526	6,968,236	503	-60	225	275	213	214	1	3.92
Bungarra	LAVRD0119	348,526	6,968,236	503	-60	225	275	251	253	2	1.23
Bungarra	LAVRD0121	348,369	6,968,355	504	-60	45	150	54	59	5	2.84
Bungarra	LAVRD0121	348,369	6,968,355	504	-60	45	150	44	49	5	1.63
Bungarra	LAVRD0121	348,369	6,968,355	504	-60	45	150	33	39	6	1.08
Bungarra	LAVRD0122	348,357	6,968,355	504	-60	45	149	48	77	29	2.61
Bungarra	LAVRD0123	348,348	6,968,355	504	-60	45	195	29	31	2	6.66
Bungarra	LAVRD0123	348,348	6,968,355	504	-60	45	195	55	68	13	0.89
Bungarra	LAVRD0123	348,348	6,968,355	504	-60	45	195	82	85	3	1.12
Bungarra	LAVRD0125	348,492	6,968,243	503	-60	225	184	36	37	1	2.22
Bungarra	LAVRD0126	348,478	6,968,222	504	-60	225	124	33	47	14	31.46
Bungarra	LAVRD0126	348,478	6,968,222	504	-60	225	124	96	102	6	1.67
Bungarra	LAVRD0126	348,478	6,968,222	504	-60	225	124	107	114	7	1.05
Bungarra	LAVRD0127	348,488	6,968,220	504	-60	225	114	30	37	7	2.12
Bungarra	LAVRD0127	348,488	6,968,220	504	-60	225	114	69	74	5	1.47
Bungarra	LAVRD0128	348,528	6,968,273	502	-60	225	230	160	173	13	3.80
Bungarra	LAVRD0128	348,528	6,968,273	502	-60	225	230	187	205	18	0.75

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	LAVRD0130	348,494	6,968,238	503	-60	225	120	55	61	6	0.70
Bungarra	LAVRD0131	348,472	6,968,243	503	-60	225	100	44	46	2	9.83
Bungarra	LAVRD0132	348,480	6,968,245	503	-60	225	100	49	66	17	13.28
Bungarra	LAVRD0132	348,480	6,968,245	503	-60	225	100	85	92	7	4.18
Bungarra	LAVRD0133	348,449	6,968,248	503	-60	225	84	31	36	5	39.41
Bungarra	LAVRD0134	348,458	6,968,257	503	-60	225	90	33	42	9	2.50
Bungarra	LAVRD0135	348,468	6,968,266	503	-60	225	100	53	59	6	19.28
Bungarra	LAVRD0135 LAVRD0135	348,468 348,468	6,968,266	503 503	-60 -60	225 225	100	39 80	46 81	7	0.56 3.44
Bungarra Bungarra	LAVRD0133	348,476	6,968,266 6,968,274	503	-60	225	120	73	80	7	3.94
Bungarra	LAVRD0136	348,476	6,968,274	503	-60	225	120	59	60	1	7.85
Bungarra	LAVRD0130	348,349	6,968,427	504	-60	90	100	79	87	8	4.07
Bungarra	LAVRD0137	348,349	6,968,427	504	-60	90	100	54	74	20	0.78
Bungarra	LAVRD0137	348,349	6,968,427	504	-60	90	100	41	46	5	1.10
Bungarra	LAVRD0138	348,347	6,968,410	504	-60	90	100	79	89	10	4.93
Bungarra	LAVRD0138	348,347	6,968,410	504	-60	90	100	31	72	41	0.62
Bungarra	LAVRD0140	348,321	6,968,410	505	-60	90	130	121	122	1	2.56
Bungarra	LAVRD0140	348,321	6,968,410	505	-60	90	130	64	67	3	0.84
Bungarra	LAVRD0142	348,347	6,968,451	504	-60	90	100	39	48	9	15.45
Bungarra	LAVRD0142	348,347	6,968,451	504	-60	90	100	83	91	8	0.74
Bungarra	LAVRD0144	348,327	6,968,375	505	-60	90	100	69	71	2	16.24
Bungarra	LAVRD0144	348,327	6,968,375	505	-60	90	100	62	63	1	3.17
Bungarra	LAVRD0145	348,360	6,968,275	505	-60	66	120	105	114	9	2.12
Bungarra	LAVRD0145	348,360	6,968,275	505	-60	66	120	46	52	6	2.87
Bungarra	LAVRD0147	348,385	6,968,481	503	-60	225	110	24	29	5	12.79
Bungarra	LAVRD0147	348,385	6,968,481	503	-60	225	110	41	43	2	2.38
Bungarra	LAVRD0148	348,405	6,968,487	503	-60	225	120	51	59	8	6.08
Bungarra	LAVRD0148	348,405	6,968,487	503	-60	225	120	42	45	3	1.86
Bungarra	LAVRD0149	348,385	6,968,470	503	-60	225	100	46	54	8	5.68
Bungarra	LAVRD0149	348,385	6,968,470	503	-60	225	100	32	39	7	3.30
Bungarra	LAVRD0149	348,385	6,968,470	503	-60	225	100	24	27	3	2.09
Bungarra	LAVRD0150	348,414	6,968,491	503	-60	225	140	112	114	2	4.14
Bungarra	LAVRD0150	348,414	6,968,491	503	-60	225	140	51	55	4	1.84
Bungarra	LAVRD0150	348,414	6,968,491	503	-60	225	140	69	70	1	2.79
Bungarra	LAVRD0151	348,413	6,968,470	503	-60	225	130	20	26	6	1.40
Bungarra	LAVRD0151 LAVRD0153	348,413	6,968,470	503 503	-60	225	130	52 41	64 47	12	0.55 2.83
Bungarra	LAVRD0153	348,382 348,396	6,968,493 6,968,504	503	-60 -60	225 225	70 90	52	63	6 11	1.97
Bungarra Bungarra	LAVRD0154 LAVRD0154	348,396	6,968,504	503	-60	225	90	71	72	1	3.79
Bungarra	LAVRD0154 LAVRD0155	348,402	6,968,519	503	-60	225	120	98	100	2	1.01
Bungarra	LAVRD0155	348,405	6,968,502	503	-60	225	80	59	65	6	16.16
Bungarra	LAVRD0150	348,413	6,968,500	503	-60	225	80	64	71	7	0.63
Bungarra	LAVRD0157	348,386	6,968,532	503	-60	225	100	78	92	14	2.05
Bungarra	LAVRD0150	348,432	6,968,449	503	-60	225	100	49	62	13	1.11
Bungarra	LAVRD0161	348,454	6,968,454	502	-60	225	100	29	33	4	1.21

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	LAVRD0163	348,407	6,968,406	503	-60	90	80	35	60	25	1.00
Bungarra	LAVRD0163	348,407	6,968,406	503	-60	90	80	15	18	3	2.27
Bungarra	LAVRD0164	348,388	6,968,407	503	-60	90	80	21	30	9	1.28
Bungarra	LAVRD0165	348,407	6,968,408	503	-60	270	80	18	33	15	1.99
Bungarra	LAVRD0165	348,407	6,968,408	503	-60	270	80	47	54	7	0.56
Bungarra	LAVRD0166	348,405	6,968,403	503	-60	0	80	26	44	18	1.88
Bungarra	LAVRD0166	348,405	6,968,403	503	-60	0	80	56	70	14	0.81
Bungarra	LAVRD0167 LAVRD0168	348,454 348,369	6,968,419	503 504	-60 -60	225 90	80 100	35 25	36 33	8	8.72 2.52
Bungarra Bungarra	LAVRD0168	348,369	6,968,422 6,968,422	504	-60	90	100	93	98	5	3.37
Bungarra	LAVRD0168	348,369	6,968,422	504	-60	90	100	50	56	6	1.44
Bungarra	LAVRD0169	348,358	6,968,427	504	-60	90	100	22	32	10	2.05
Bungarra	LAVRD0169	348,358	6,968,427	504	-60	90	100	43	64	21	0.85
Bungarra	LAVRD0169	348,358	6,968,427	504	-60	90	100	85	91	6	1.47
Bungarra	LAVRD0169	348,358	6,968,427	504	-60	90	100	69	77	8	0.88
Bungarra	LAVRD0170	348,337	6,968,450	504	-60	90	120	75	79	4	4.17
Bungarra	LAVRD0170	348,337	6,968,450	504	-60	90	120	51	61	10	1.17
Bungarra	LAVRD0170	348,337	6,968,450	504	-60	90	120	96	97	1	4.88
Bungarra	LAVRD0170	348,337	6,968,450	504	-60	90	120	34	35	1	3.52
Bungarra	LAVRD0173	348,346	6,968,470	504	-60	90	110	44	53	9	4.32
Bungarra	LAVRD0174	348,361	6,968,413	504	-60	90	100	34	46	12	0.89
Bungarra	LAVRD0174	348,361	6,968,413	504	-60	90	100	26	29	3	0.88
Bungarra	LAVRD0176	348,397	6,968,369	504	-60	90	90	47	49	2	1.35
Bungarra	LAVRD0176	348,397	6,968,369	504	-60	90	90	54	58	4	0.67
Bungarra	LAVRD0177	348,427	6,968,351	504	-60	90	60	24	29	5	0.72
Bungarra	LAVRD0178	348,409	6,968,354	504	-60	90	90	37	44	7	5.09
Bungarra	LAVRD0178	348,409	6,968,354	504	-60	90	90	53	60	7	0.80
Bungarra	LAVRD0180	348,399	6,968,315	504	-60	90	90	48	68	20	0.62
Bungarra	LAVRD0180	348,399	6,968,315	504	-60	90	90	31	32	1	3.62
Bungarra	LAVRD0180	348,399	6,968,315	504	-60	90	90	89	90	1	3.46
Bungarra	LAVRD0180	348,399	6,968,315	504	-60	90	90	73	75	2	1.23
Bungarra	RC1 RC11	348,390 348,355	6,968,322 6,968,337	504 504	-90 -60	90	75 71	49 52	60 71	11 19	0.64 1.30
Bungarra Bungarra	RC11	348,355	6,968,337	504	-60	90	71	38	43	5	0.69
Bungarra	RC12	348,375	6,968,271	505	-60	90	90	42	47	5	0.52
Bungarra	RC14	348,403	6,968,372	504	-90	0	73	49	52	3	0.32
Bungarra	RC15	348,411	6,968,372	503	-60	90	81	46	60	14	1.20
Bungarra	RC16	348,438	6,968,423	503	-90	0	80	30	48	18	0.89
Bungarra	RC16	348,438	6,968,423	503	-90	0	80	20	25	5	0.96
Bungarra	RC2	348,359	6,968,372	504	-60	90	59	39	49	10	0.75
Bungarra	RC3	348,380	6,968,372	504	-60	90	85	34	42	8	0.75
Bungarra	RC3	348,380	6,968,372	504	-60	90	85	27	33	6	0.57
Bungarra	RC4	348,380	6,968,322	504	-90	0	72	48	69	21	3.55
Bungarra	RC5	348,370	6,968,322	504	-90	0	79	42	51	9	0.53
Bungarra	RC6	348,398	6,968,423	504	-90	0	66	12	28	16	1.17

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	RC7	348,419	6,968,422	503	-90	0	70	6	47	41	1.02
Boundary	BDDD071	345,460	6,971,855	500	-60	277	218	161	169	8	0.91
Boundary	BDDD088	345,055	6,971,926	495	-60	90	395	280	285	5	6.45
Boundary	BDDD088	345,055	6,971,926	495	-60	90	395	258	264	6	3.12
Boundary	BDDD088	345,055	6,971,926	495	-60	90	395	245	252	7	1.01
Boundary	BDDD088	345,055	6,971,926	495	-60	90	395	234	238	4	0.59
Boundary	BDDD089	345,059	6,971,876	495	-60	90	330	282	287	5	2.91
Boundary	BDDD089	345,059	6,971,876	495	-60	90	330	247	249	2	1.48
Boundary	BDDD089	345,059	6,971,876	495	-60	90	330	270	271	1	2.57
Boundary	BDGW0003	345,221	6,971,893	494	-90	0	130	72	78	6	12.11
Boundary	BDGW0003	345,221	6,971,893	494	-90	0	130	83	94	11	1.48
Boundary	BDGW0003	345,221	6,971,893	494	-90	0	130	40	43	3	2.91
Boundary Boundary	BDGW0003 BDGW0007	345,221 345,236	6,971,893 6,971,889	494 494	-90 -90	0	130 121	111 60	118 79	7 19	1.14 2.84
Boundary	BDGW0007 BDGW0007	345,236	6,971,889	494	-90	0	121	84	103	19	1.00
Boundary	BDGW0007 BDGW0007	345,236	6,971,889	494	-90	0	121	118	119	1	4.73
Boundary	BDGW0007 BDGW0008	345,210	6,971,489	497	-90	0	127	52	71	19	1.14
Boundary	BDGW0008	345,210	6,971,489	497	-90	0	127	26	32	6	0.56
Boundary	BDGW0000	345,144	6,971,839	495	-90	0	121	72	77	5	1.16
Boundary	BDRC001	345,273	6,971,941	494	-60	270	136	109	129	20	1.91
Boundary	BDRC001	345,273	6,971,941	494	-60	270	136	88	100	12	0.67
Boundary	BDRC001	345,273	6,971,941	494	-60	270	136	32	34	2	1.29
Boundary	BDRC001	345,273	6,971,941	494	-60	270	136	54	57	3	0.81
Boundary	BDRC002	345,314	6,971,943	494	-60	270	180	127	161	34	2.21
Boundary	BDRC002	345,314	6,971,943	494	-60	270	180	101	117	16	1.31
Boundary	BDRC002	345,314	6,971,943	494	-60	270	180	36	38	2	2.46
Boundary	BDRC002	345,314	6,971,943	494	-60	270	180	168	174	6	0.55
Boundary	BDRC003	345,325	6,971,971	494	-60	270	190	120	124	4	13.62
Boundary	BDRC003	345,325	6,971,971	494	-60	270	190	129	139	10	1.85
Boundary	BDRC003	345,325	6,971,971	494	-60	270	190	94	96	2	8.79
Boundary	BDRC003	345,325	6,971,971	494	-60	270	190	172	178	6	0.63
Boundary	BDRC003	345,325	6,971,971	494	-60	270	190	156	160	4	0.70
Boundary	BDRC004	345,323	6,971,820	495	-60	270	106	91	96	5	0.81
Boundary	BDRC005	345,316	6,971,845	495	-60	270	145	76	92	16	1.06
Boundary	BDRC005	345,316	6,971,845	495	-60	270	145	128	132	4	0.51
Boundary	BDRC006	345,351	6,971,847	495	-60	270	77	76	77	1	5.18
Boundary	BDRC008	345,264	6,971,867	494	-60	270	132	97	103	6	3.60
Boundary	BDRC008	345,264	6,971,867	494	-60	270	132	21	24	3	3.54
Boundary	BDRC009	345,304	6,971,868	494	-60	270	150	115	122	7	2.77
Boundary	BDRC009	345,304	6,971,868	494	-60	270	150	16	27	11	1.46
Boundary	BDRC009	345,304	6,971,868	494	-60	270	150	32	35	3	1.11
Boundary	BDRC011	345,301	6,971,968	494	-60	270	154	80	85	5	9.42
Boundary	BDRC011	345,301	6,971,968	494	-60	270	154	125	127	2	4.50
Boundary	BDRC011	345,301	6,971,968	494	-60	270	154	140	144	4	1.73
Boundary	BDRC011	345,301	6,971,968	494	-60	270	154	113	114	1	3.10

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRC012	345,340	6,971,871	495	-65	270	176	77	80	3	3.65
Boundary	BDRC012	345,340	6,971,871	495	-65	270	176	158	159	1	3.94
Boundary	BDRC012	345,340	6,971,871	495	-65	270	176	126	127	1	2.15
Boundary	BDRC014	345,275	6,971,916	494	-60	270	154	62	89	27	4.53
Boundary	BDRC014	345,275	6,971,916	494	-60	270	154	128	139	11	4.25
Boundary	BDRC014	345,275	6,971,916	494	-60	270	154	20	24	4	6.90
Boundary	BDRC014	345,275	6,971,916	494	-60	270	154	52	55	3	2.12
Boundary	BDRC015	345,243	6,971,938	494	-60	270	120	47	48	1 -	7.78
Boundary	BDRC016	345,246	6,971,964	494	-60	270	154	47	52	5	3.21
Boundary	BDRC017	345,247	6,972,013	493	-60	270	190	149	159	10	2.03
Boundary	BDRC018	345,354	6,971,922	494	-60	270	196	100	117	17	0.92
Boundary	BDRC018	345,354	6,971,922	494	-60	270	196	138 89	140	2	4.94
Boundary Boundary	BDRC018 BDRC018	345,354 345,354	6,971,922 6,971,922	494 494	-60 -60	270 270	196 196	162	92 165	3	1.42 1.23
Boundary	BDRC018	345,354	6,971,922	494	-60	270	196	172	173	1	2.60
Boundary	BDRC019	345,248	6,971,739	495	-60	270	150	67	73	6	2.61
Boundary	BDRC022	345,325	6,971,995	494	-60	270	150	128	132	4	2.98
Boundary	BDRC022	345,325	6,971,995	494	-60	270	150	140	144	4	1.71
Boundary	BDRC025	345,225	6,971,813	495	-60	268	124	114	117	3	1.87
Boundary	BDRC026	345,363	6,971,822	495	-60	268	168	108	118	10	1.86
Boundary	BDRC026	345,363	6,971,822	495	-60	268	168	62	63	1	3.10
Boundary	BDRC026	345,363	6,971,822	495	-60	268	168	76	77	1	2.80
Boundary	BDRC027	345,257	6,971,840	494	-60	268	118	18	23	5	4.74
Boundary	BDRC028	345,372	6,971,848	495	-60	268	190	104	111	7	3.35
Boundary	BDRC028	345,372	6,971,848	495	-60	268	190	81	86	5	1.06
Boundary	BDRC030	345,206	6,971,911	494	-70	268	150	89	104	15	3.03
Boundary	BDRC030	345,206	6,971,911	494	-70	268	150	73	82	9	2.99
Boundary	BDRC030	345,206	6,971,911	494	-70	268	150	121	134	13	1.59
Boundary	BDRC030	345,206	6,971,911	494	-70	268	150	145	150	5	1.76
Boundary	BDRC030	345,206	6,971,911	494	-70	268	150	113	116	3	0.75
Boundary	BDRC031	345,255	6,971,914	494	-60	268	140	24	32	8	0.64
Boundary	BDRC032	345,304	6,971,918	494	-60	268	183	170	177	7	3.88
Boundary	BDRC032	345,304	6,971,918	494	-60	268	183	79	97	18	1.16
Boundary	BDRC032	345,304	6,971,918	494	-60	268	183	125	150	25	0.82
Boundary	BDRC032	345,304	6,971,918	494	-60	268	183	57	63	6	0.83
Boundary	BDRC032	345,304	6,971,918	494	-60	268	183	112	117	5	0.84
Boundary	BDRC033	345,374	6,971,924	495	-60	268	180	149	152	3	2.63
Boundary	BDRC033	345,374	6,971,924	495	-60	268	180	134	140	6	0.59
Boundary	BDRC033	345,374	6,971,924	495	-60	268	180	84	86	2	1.47
Boundary	BDRC033	345,374	6,971,924	495	-60	268	180	108	111	3	0.76
Boundary	BDRC034	345,393	6,971,926	495	-60	268	180	140	152	12	1.28
Boundary	BDRC034	345,393	6,971,926	495	-60	268	180	130	134	4	1.56
Boundary	BDRC034	345,393	6,971,926	495	-60	268	180	166	170	4	1.40
Boundary	BDRC035	345,334	6,971,945	494	-60	268	200	153	180	27	9.34
Boundary	BDRC035	345,334	6,971,945	494	-60	268	200	124	148	24	1.30

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRC035	345,334	6,971,945	494	-60	268	200	109	112	3	2.65
Boundary	BDRC036	345,379	6,971,949	495	-60	268	200	140	150	10	4.44
Boundary	BDRC036	345,379	6,971,949	495	-60	268	200	130	131	1	2.85
Boundary	BDRC038	345,383	6,971,823	495	-60	268	180	166	177	11	1.66
Boundary	BDRC038	345,383	6,971,823	495	-60	268	180	79	85	6	0.87
Boundary	BDRC040	345,413	6,971,977	496	-60	268	184	97	117	20	0.81
Boundary	BDRC040	345,413	6,971,977	496	-60	268	184	81	88	7	0.93
Boundary	BDRC041	345,300	6,971,993	494	-60	268	202	180	182	2	5.14
Boundary	BDRC041	345,300	6,971,993	494	-60	268	202	132	135	3	1.75
Boundary	BDRC041	345,300	6,971,993	494	-60	268	202	123	124	1	2.35
Boundary	BDRC045	345,351	6,971,851	495	-60	268	141	81	100	19	0.73
Boundary	BDRC045	345,391	6,971,849 6,971,849	495	-60	268	150	115 72	117	3	14.38 1.89
Boundary Boundary	BDRC045 BDRC045	345,391 345,391	6,971,849	495 495	-60 -60	268 268	150 150	57	75 63	6	0.84
Boundary	BDRC043	345,231	6,972,037	493	-60	268	184	162	164	2	14.30
Boundary	BDRC040	345,380	6,971,873	495	-60	270	200	154	157	3	1.67
Boundary	BDRC051	345,380	6,971,873	495	-60	270	200	142	146	4	0.83
Boundary	BDRC058	345,289	6,971,917	495	-60	270	180	73	118	45	6.07
Boundary	BDRC058	345,289	6,971,917	495	-60	270	180	61	64	3	8.93
Boundary	BDRC058	345,289	6,971,917	495	-60	270	180	152	160	8	1.05
Boundary	BDRC058	345,289	6,971,917	495	-60	270	180	127	132	5	1.57
Boundary	BDRC058	345,289	6,971,917	495	-60	270	180	174	176	2	2.50
Boundary	BDRC059	345,412	6,971,926	500	-60	270	200	21	23	2	7.44
Boundary	BDRC059	345,412	6,971,926	500	-60	270	200	28	31	3	2.05
Boundary	BDRC059	345,412	6,971,926	500	-60	270	200	128	131	3	2.01
Boundary	BDRC059	345,412	6,971,926	500	-60	270	200	197	199	2	1.93
Boundary	BDRC059	345,412	6,971,926	500	-60	270	200	160	161	1	3.04
Boundary	BDRC060	345,257	6,971,939	494	-60	270	120	38	46	8	17.14
Boundary	BDRC060	345,257	6,971,939	494	-60	270	120	20	23	3	10.33
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	73	96	23	4.16
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	62	67	5	3.16
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	105	114	9	1.37
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	119	121	2	4.31
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	53	55	2	2.51
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	131	134	3	1.43
Boundary	BDRC061	345,295	6,971,941	494	-60	270	170	150	154	4	0.74
Boundary	BDRC062	345,433	6,971,979	496	-60	270	170	148	150	2	10.62
Boundary	BDRC062	345,433	6,971,979	496	-60	270	170	109	118	9	1.72
Boundary	BDRC062	345,433	6,971,979	496	-60	270	170	97	98	1	3.95
Boundary	BDRC063	345,392	6,971,975	495	-60	270	140	64	67	3	1.80
Boundary	BDRC064	345,399	6,971,950	495	-60	270	200	45	72	27	1.11
Boundary	BDRC064	345,399	6,971,950	495	-60	270	200	192	199	7	3.81
Boundary	BDRC065	345,425	6,972,001	497	-60	270	159	126	156	30	2.15
Boundary	BDRC066	345,163	6,971,741	495	-60	90	110	67	78	11	2.56
Boundary	BDRC066	345,163	6,971,741	495	-60	90	110	57	60	3	3.22

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRC067	345,346	6,972,046	496	-60	270	153	125	130	5	1.26
Boundary	BDRC072	345,436	6,971,903	496	-60	277	200	58	79	21	1.71
Boundary	BDRC072	345,436	6,971,903	496	-60	277	200	24	33	9	1.87
Boundary	BDRC072	345,436	6,971,903	496	-60	277	200	140	146	6	0.98
Boundary	BDRC073	345,453	6,971,954	496	-60	276	102	96	102	6	1.88
Boundary	BDRC074	345,389	6,971,999	500	-60	270	150	103	115	12	1.91
Boundary	BDRC074	345,389	6,971,999	500	-60	270	150	134	144	10	1.21
Boundary	BDRC077	345,092	6,971,827	495	-60	90	200	104	119	15	0.68
Boundary	BDRC080	345,291	6,972,093	500	-60	270	172	148	158	10	1.17
Boundary	BDRC083	345,434	6,971,877	495	-60	270	135	63	73	10	1.56
Boundary	BDRC083	345,434	6,971,877	495	-60	270	135	51	58	7	0.83
Boundary	BDRC083	345,434	6,971,877 6,971,830	495	-60	270	135	82 69	87	5	0.76
Boundary Boundary	BDRC085 BDRC089	345,112 345,059	6,971,876	495 495	-60 -60	90	121 201	127	81 129	12 2	2.51 5.15
Boundary	BDRC009 BDRD0001	345,344	6,971,758	495	-60	225	294	87	88	1	17.60
Boundary	BDRD0001 BDRD0002	345,276	6,971,835	495	-60	270	299	45	54	9	9.58
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	104	113	9	7.16
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	60	74	14	0.90
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	89	91	2	2.30
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	81	84	3	1.16
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	19	21	2	1.64
Boundary	BDRD0002	345,276	6,971,835	495	-60	270	299	150	152	2	1.64
Boundary	BDRD0003	345,255	6,971,759	495	-60	225	204	133	139	6	1.75
Boundary	BDRD0003	345,255	6,971,759	495	-60	225	204	73	79	6	1.60
Boundary	BDRD0004	345,284	6,971,756	495	-60	225	199	129	134	5	1.00
Boundary	BDRD0004	345,284	6,971,756	495	-60	225	199	140	143	3	1.25
Boundary	BDRD0006	345,207	6,971,761	495	-60	225	210	203	210	7	1.05
Boundary	BDRD0006	345,207	6,971,761	495	-60	225	210	60	62	2	2.45
Boundary	BDRD0007	345,240	6,971,739	495	-60	225	195	169	175	6	1.40
Boundary	BDRD0007	345,240	6,971,739	495	-60	225	195	119	124	5	0.79
Boundary	BDRD0007	345,240	6,971,739	495	-60	225	195	77	79	2	1.86
Boundary	BDRD0007	345,240	6,971,739	495	-60	225	195	102	107	5	0.50
Boundary	BDRD0007	345,240	6,971,739	495	-60	225	195	59	60	1	2.40
Boundary	BDRD0008	345,226	6,971,761	495	-60	225	200	68	85	17	1.53
Boundary	BDRD0008	345,226	6,971,761	495	-60	225	200	27	30	3	7.99
Boundary	BDRD0009	345,384	6,971,922	495	-60	246	300	146	150	4	5.39
Boundary	BDRD0009	345,384	6,971,922	495	-60	246	300	236	238	2	1.71
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	62	107	45	2.01
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	137	148	11	2.38
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	195	200	5	2.36
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	115	128	13	0.79
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	281	283	2	3.17
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	221	230	9	0.70
Boundary	BDRD0010	345,287	6,971,920	494	-60	246	300	36	37	1	4.88
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	51	66	15	4.32

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	98	108	10	1.93
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	205	211	6	1.73
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	88	91	3	3.22
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	73	82	9	0.91
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	244	247	3	2.03
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	238	239	1	2.47
Boundary	BDRD0011	345,346	6,971,851	495	-60	246	300	133	137	4	0.58
Boundary	BDRD0013 BDRD0016	345,440 345,461	6,971,880 6,971,917	495 496	-60 -60	270 270	90	71 82	75 84	2	1.37 1.06
Boundary Boundary	BDRD0018	345,423	6,971,917	495	-60	270	90	60	67	7	0.83
Boundary	BDRD0018	345,423	6,971,902	495	-60	270	90	51	52	1	3.50
Boundary	BDRD0019	345,420	6,971,920	495	-60	270	90	34	38	4	1.66
Boundary	BDRD0020	345,438	6,971,918	495	-60	270	90	57	64	7	1.30
Boundary	BDRD0020	345,438	6,971,918	495	-60	270	90	70	80	10	0.66
Boundary	BDRD0020	345,438	6,971,918	495	-60	270	90	47	52	5	0.81
Boundary	BDRD0021	345,419	6,971,948	495	-60	270	90	43	88	45	0.97
Boundary	BDRD0022	345,270	6,971,878	494	-60	270	150	55	95	40	3.17
Boundary	BDRD0022	345,270	6,971,878	494	-60	270	150	122	126	4	8.81
Boundary	BDRD0022	345,270	6,971,878	494	-60	270	150	25	38	13	1.39
Boundary	BDRD0022	345,270	6,971,878	494	-60	270	150	104	106	2	2.73
Boundary	BDRD0023	345,250	6,971,929	494	-60	270	70	39	40	1	3.68
Boundary	BDRD0024	345,268	6,971,933	494	-60	270	150	107	118	11	2.61
Boundary	BDRD0024	345,268	6,971,933	494	-60	270	150	48	66	18	0.90
Boundary	BDRD0024	345,268	6,971,933	494	-60	270	150	27	29	2	4.84
Boundary	BDRD0024	345,268	6,971,933	494	-60	270	150	91	93	2	3.77
Boundary	BDRD0024	345,268	6,971,933	494	-60	270	150	35	36	1	5.93
Boundary	BDRD0025	345,296	6,971,930	494	-60	270	150	93	140	47	3.42
Boundary	BDRD0025	345,296	6,971,930	494	-60	270	150	62	85	23	1.29
Boundary	BDRD0025	345,296	6,971,930	494	-60	270	150	51	53	2	2.64
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	210	250	40	0.85
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	87	100	13	1.89
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	113	120	7	2.89
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	185	205	20	0.75
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	280	297	17	0.84
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	129	139	10	1.22
Boundary	BDRD0026 BDRD0026	345,349 345,349	6,971,881 6,971,881	495 495	-60 -60	270	300	171 259	173	5	2.56 0.82
Boundary Boundary	BDRD0026	345,349	6,971,881	495	-60	270 270	300	72	264 73	1	2.45
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	163	166	3	0.79
Boundary	BDRD0026	345,349	6,971,881	495	-60	270	300	105	106	1	2.35
Boundary	BDRD0027	345,289	6,971,873	494	-60	270	150	69	81	12	1.55
Boundary	BDRD0027	345,289	6,971,873	494	-60	270	150	135	144	9	1.99
Boundary	BDRD0027	345,289	6,971,873	494	-60	270	150	119	130	11	0.80
Boundary	BDRD0027	345,289	6,971,873	494	-60	270	150	23	27	4	1.77
Boundary	BDRD0027	345,289	6,971,873	494	-60	270	150	111	113	2	1.71

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRD0028	345,369	6,971,894	495	-60	270	250	69	74	5	3.81
Boundary	BDRD0028	345,369	6,971,894	495	-60	270	250	174	175	1	5.38
Boundary	BDRD0028	345,369	6,971,894	495	-60	270	250	243	250	7	0.73
Boundary	BDRD0030	345,308	6,971,880	494	-60	270	150	74	82	8	10.78
Boundary	BDRD0030	345,308	6,971,880	494	-60	270	150	146	150	4	2.45
Boundary	BDRD0030	345,308	6,971,880	494	-60	270	150	50	52	2	2.90
Boundary	BDRD0030	345,308	6,971,880	494	-60	270	150	117	126	9	0.61
Boundary	BDRD0030 BDRD0031	345,308 345,327	6,971,880 6,971,879	494 494	-60 -60	270 270	150 170	91 75	95 94	19	0.60 0.78
Boundary Boundary	BDRD0031	345,327	6,971,879	494	-60	270	170	147	149	2	2.14
Boundary	BDRD0031	345,410	6,971,972	496	-60	225	250	46	82	36	0.87
Boundary	BDRD0032	345,410	6,971,972	496	-60	225	250	177	186	9	0.85
Boundary	BDRD0032	345,410	6,971,972	496	-60	225	250	138	139	1	3.10
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	114	116	2	24.21
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	136	159	23	1.42
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	240	245	5	1.50
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	165	173	8	0.90
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	121	123	2	2.30
Boundary	BDRD0033	345,293	6,972,008	494	-60	225	249	188	194	6	0.60
Boundary	BDRD0034	345,312	6,971,859	494	-60	270	138	73	89	16	0.95
Boundary	BDRD0034	345,312	6,971,859	494	-60	270	138	104	110	6	0.53
Boundary	BDRD0034	345,312	6,971,859	494	-60	270	138	118	120	2	1.55
Boundary	BDRD0035	345,289	6,972,010	494	-60	180	138	127	138	11	0.87
Boundary	BDRD0035	345,289	6,972,010	494	-60	180	138	90	92	2	1.79
Boundary	BDRD0036	345,238	6,971,797	495	-60	225	199	81	94	13	1.23
Boundary	BDRD0037	345,387	6,971,797	495	-60	270	200	108	111	3	0.84
Boundary	BDRD0039	345,284	6,971,708	495	-60	225	180	83	86	3	0.83
Boundary	BDRD0040	345,229	6,971,648	496	-60	225	150	69	82	13	0.82
Boundary	BDRD0040	345,229	6,971,648	496	-60	225	150	50	62	12	0.56
Boundary	BDRD0040	345,229	6,971,648	496	-60	225	150	90	92	2	2.56
Boundary	BDRD0041	345,253	6,971,647	496	-60	225	150	48	55	7	1.33
Boundary Boundary	BDRD0041	345,253	6,971,647	496	-60	225	150	114	115	1	2.30
Boundary	BDRD0042 BDRD0043	345,281 345,292	6,971,675 6,971,906	496 494	-60 60	270	200 245	59 179	64 209	5 30	0.85 3.82
Boundary	BDRD0043	345,292	6,971,906	494	-60 -60	260 260	245	84	97	13	1.06
Boundary	BDRD0043 BDRD0043	345,292	6,971,906	494	-60	260	245	65	76	11	0.95
Boundary	BDRD0043	345,292	6,971,906	494	-60	260	245	161	166	5	1.53
Boundary	BDRD0043	345,292	6,971,906	494	-60	260	245	18	26	8	0.67
Boundary	BDRD0043	345,292	6,971,906	494	-60	260	245	138	141	3	1.70
Boundary	BDRD0043	345,292	6,971,906	494	-60	260	245	59	60	1	4.02
Boundary	BDRD0043	345,292	6,971,906	494	-60	260	245	102	106	4	0.88
Boundary	BDRD0044	345,284	6,971,692	496	-60	270	200	163	166	3	2.45
Boundary	BDRD0044	345,284	6,971,692	496	-60	270	200	51	59	8	0.92
Boundary	BDRD0044	345,284	6,971,692	496	-60	270	200	114	127	13	0.51
Boundary	BDRD0044	345,284	6,971,692	496	-60	270	200	137	139	2	1.09

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRD0046	345,189	6,971,646	496	-60	225	258	56	64	8	2.58
Boundary	BDRD0046	345,189	6,971,646	496	-60	225	258	158	161	3	0.67
Boundary	BDRD0048	345,235	6,971,554	497	-60	225	306	35	51	16	1.24
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	195	209	14	1.92
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	218	240	22	1.03
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	178	187	9	1.52
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	258	273	15	0.54
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	279	280	1	4.10
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	132	133	1	3.21
Boundary	BDRD0049	345,330	6,972,032	495	-60	225	299	252	253	1	2.85
Boundary	BDRD0051	345,364	6,972,018	495	-60	225	320	109	111	2	4.86
Boundary	BDRD0051	345,364	6,972,018 6,972,018	495	-60	225	320	292	293	1	4.98
Boundary Boundary	BDRD0051 BDRD0051	345,364 345,364	6,972,018	495 495	-60 -60	225 225	320 320	240 50	245 54	5 4	0.89
Boundary	BDRD0051	345,364	6,972,018	495	-60	225	320	158	160	2	1.09
Boundary	BDRD0051 BDRD0052	345,201	6,971,671	496	-60	225	204	116	118	2	9.85
Boundary	BDRD0052	345,201	6,971,671	496	-60	225	204	26	28	2	1.49
Boundary	BDRD0052	345,385	6,972,032	496	-60	225	249	106	113	7	1.19
Boundary	BDRD0053	345,385	6,972,032	496	-60	225	249	153	166	13	0.52
Boundary	BDRD0053	345,385	6,972,032	496	-60	225	249	134	136	2	1.38
Boundary	BDRD0053	345,385	6,972,032	496	-60	225	249	142	145	3	0.75
Boundary	BDRD0054	345,172	6,971,673	496	-60	225	186	75	78	3	0.89
Boundary	BDRD0055	345,417	6,972,009	497	-60	225	251	155	170	15	1.79
Boundary	BDRD0055	345,417	6,972,009	497	-60	225	251	107	121	14	1.56
Boundary	BDRD0055	345,417	6,972,009	497	-60	225	251	192	204	12	1.39
Boundary	BDRD0055	345,417	6,972,009	497	-60	225	251	95	98	3	5.09
Boundary	BDRD0055	345,417	6,972,009	497	-60	225	251	209	214	5	2.26
Boundary	BDRD0061	345,410	6,971,994	496	-60	225	251	74	123	49	1.89
Boundary	BDRD0061	345,410	6,971,994	496	-60	225	251	167	174	7	2.34
Boundary	BDRD0063	345,404	6,971,943	495	-60	225	250	180	182	2	11.87
Boundary	BDRD0063	345,404	6,971,943	495	-60	225	250	76	82	6	0.84
Boundary	BDRD0063	345,404	6,971,943	495	-60	225	250	31	32	1	2.04
Boundary	BDRD0064	345,235	6,971,706	496	-60	225	210	65	68	3	2.29
Boundary	BDRD0064	345,235	6,971,706	496	-60	225	210	97	105	8	0.58
Boundary	BDRD0064	345,235	6,971,706	496	-60	225	210	81	83	2	1.15
Boundary	BDRD0064	345,235	6,971,706	496	-60	225	210	39	42	3	0.73
Boundary	BDRD0065	345,400	6,971,917	495	-60	225	250	155	156	1	2.17
Boundary	BDRD0066	345,242	6,971,619	496	-60	225	204	39	48	9	0.90
Boundary	BDRD0067	345,372	6,971,946	495	-60	225	250	200	203	3	1.28
Boundary	BDRD0067	345,372	6,971,946	495	-60	225	250	131	133	2	1.60
Boundary	BDRD0067	345,372	6,971,946	495	-60	225	250	89	91	2	1.41
Boundary	BDRD0068	345,355	6,972,059	496	-60	225	250	242	250	8	7.07
Boundary	BDRD0068	345,355	6,972,059	496	-60	225	250	115	118	3	1.04
Boundary	BDRD0068	345,355	6,972,059	496	-60	225	250	132	134	2	1.45
Boundary	BDRD0068	345,355	6,972,059	496	-60	225	250	107	108	1	2.02

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRD0069	345,429	6,971,997	497	-60	225	250	95	101	6	8.01
Boundary	BDRD0069	345,429	6,971,997	497	-60	225	250	159	171	12	1.45
Boundary	BDRD0069	345,429	6,971,997	497	-60	225	250	218	221	3	2.00
Boundary	BDRD0069	345,429	6,971,997	497	-60	225	250	194	198	4	0.65
Boundary	BDRD0070	345,411	6,972,053	497	-60	225	250	158	166	8	0.67
Boundary	BDRD0070	345,411	6,972,053	497	-60	225	250	207	210	3	1.24
Boundary	BDRD0071	345,384	6,971,999	496	-60	225	250	68	76	8	4.79
Boundary	BDRD0071	345,384	6,971,999	496	-60	225	250	189	190	1	2.42
Boundary	BDRD0073	345,432	6,971,946	496	-60	235	250	45	52	7	1.29
Boundary	BDRD0073	345,432	6,971,946	496	-60	235	250	60	62	2	3.50
Boundary	BDRD0073	345,432	6,971,946	496	-60	235	250	106	113	7	0.96
Boundary	BDRD0073	345,432	6,971,946	496	-60	235	250	76	83	7	0.64
Boundary Boundary	BDRD0073 BDRD0073	345,432 345,432	6,971,946 6,971,946	496 496	-60 -60	235 235	250 250	133 88	138 90	5 2	0.69 1.21
Boundary	BDRD0073	345,235	6,971,586	496	-60	225	200	32	41	9	1.51
Boundary	BDRD0074 BDRD0074	345,235	6,971,586	496	-60	225	200	46	51	5	0.98
Boundary	BDRD0074	345,235	6,971,586	496	-60	225	200	84	85	1	2.57
Boundary	BDRD0071	345,262	6,971,709	496	-60	225	200	140	160	20	1.45
Boundary	BDRD0076	345,262	6,971,709	496	-60	225	200	167	171	4	0.67
Boundary	BDRD0077	345,196	6,971,612	496	-60	225	100	61	66	5	0.75
Boundary	BDRD0078	345,237	6,971,519	497	-60	225	100	45	67	22	1.75
Boundary	BDRD0078	345,237	6,971,519	497	-60	225	100	76	85	9	1.16
Boundary	BDRD0078	345,237	6,971,519	497	-60	225	100	90	97	7	1.06
Boundary	BDRD0079	345,208	6,971,613	496	-60	225	100	87	89	2	6.79
Boundary	BDRD0080	345,197	6,971,506	497	-60	225	100	56	58	2	1.02
Boundary	BDRD0080	345,197	6,971,506	497	-60	225	100	83	84	1	2.02
Boundary	BDRD0081	345,194	6,971,585	496	-60	225	100	56	61	5	0.84
Boundary	BDRD0084	345,184	6,971,489	497	-60	225	100	57	72	15	1.81
Boundary	BDRD0085	345,244	6,971,585	496	-60	225	100	56	76	20	0.80
Boundary	BDRD0086	345,164	6,971,466	497	-60	225	100	20	22	2	3.45
Boundary	BDRD0086	345,164	6,971,466	497	-60	225	100	27	29	2	1.96
Boundary	BDRD0088	345,186	6,971,462	497	-60	225	100	95	98	3	9.61
Boundary	BDRD0089	345,215	6,971,554	497	-60	225	100	68	70	2	3.29
Boundary	BDRD0090	345,200	6,971,486	497	-60	225	100	95	96	1	9.05
Boundary	BDRD0094	345,241	6,971,434	498	-60	225	100	62	89	27	4.07
Boundary	BDRD0094	345,241	6,971,434	498	-60	225	100	28	45	17	1.44
Boundary	BDRD0094	345,241	6,971,434	498	-60	225	100	95	100	5	1.44
Boundary	BDRD0094	345,241	6,971,434	498	-60	225	100	50	52	2	1.69
Boundary	BDRD0095	345,242	6,971,465	498	-60	225	100	67	96	29	0.77
Boundary	BDRD0095	345,242	6,971,465	498	-60	225	100	56	62	6	0.89
Boundary	BDRD0096	345,227	6,971,463	497	-60	225	100	14	26	12	3.05
Boundary	BDRD0097	345,243	6,971,496	497	-60	225	100	52	86	34	1.32
Boundary	BDRD0097	345,243	6,971,496	497	-60	225	100	93	95	2	1.20
Boundary	BDRD0100	345,197	6,971,428	497	-60	225	100	55	61	6	4.23
Boundary	BDRD0100	345,197	6,971,428	497	-60	225	100	67	82	15	1.13

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BDRD0101	345,169	6,971,375	498	-60	225	100	18	20	2	1.04
Boundary	BDRD0102	345,180	6,971,431	497	-60	225	100	3	6	3	10.28
Boundary	BDRD0102	345,180	6,971,431	497	-60	225	100	13	15	2	6.33
Boundary	BDRD0102	345,180	6,971,431	497	-60	225	100	61	68	7	0.59
Boundary	BDRD0103	345,179	6,971,373	498	-60	225	100	88	90	2	1.01
Boundary	BDRD0105	345,195	6,971,379	498	-60	225	100	51	53	2	1.33
Boundary	BDRD0106	345,325	6,971,807	495	-60	225	160	72	84	12	0.71
Boundary	BDRD0107 BDRD0107	345,211 345,211	6,971,368 6,971,368	498 498	-60 -60	225 225	100	74 91	84 98	10 7	1.43 0.53
Boundary Boundary	BDRD0107	345,211	6,971,810	495	-60	225	160	86	89	3	2.01
Boundary	BDRD0111	345,188	6,971,338	498	-60	225	100	77	80	3	2.97
Boundary	BDRD0111	345,188	6,971,338	498	-60	225	100	45	46	1	4.28
Boundary	BDRD0112	345,282	6,971,789	495	-60	225	160	130	138	8	3.29
Boundary	BDRD0112	345,282	6,971,789	495	-60	225	160	75	83	8	0.56
Boundary	BDRD0112	345,282	6,971,789	495	-60	225	160	114	116	2	1.50
Boundary	BDRD0114	345,266	6,971,782	495	-60	225	141	91	95	4	2.60
Boundary	BDRD0114	345,266	6,971,782	495	-60	225	141	75	84	9	0.79
Boundary	BDRD0114	345,266	6,971,782	495	-60	225	141	63	69	6	0.99
Boundary	BDRD0115	345,171	6,971,852	494	-60	225	140	64	68	4	0.80
Boundary	BDRD0116	345,264	6,971,766	495	-60	225	130	76	81	5	1.78
Boundary	BDRD0117	345,182	6,971,861	494	-60	225	140	71	82	11	3.05
Boundary	BDRD0117	345,182	6,971,861	494	-60	225	140	50	58	8	0.58
Boundary	BDRD0118	345,158	6,971,873	494	-60	225	140	85	89	4	0.83
Boundary	BDRD0120	345,247	6,971,806	495	-60	225	160	30	33	3	1.01
Boundary	BDRD0120	345,247	6,971,806	495	-60	225	160	65	67	2	1.20
Boundary	BDRD0120	345,247	6,971,806	495	-60	225	160	23	25	2	1.12
Boundary	BDRD0122	345,346	6,971,800	495	-60	225	160	38	42	4	1.20
Boundary	BDRD0125	345,226	6,971,805	495	-60	225	138	60	72	12	0.79
Boundary	BDRD0127	345,247	6,971,784	495	-60	225	160	65	71	6	1.14
Boundary	BDRD0130	345,180	6,971,877	494	-60	225	140	84	107	23	0.98
Boundary	BDRD0130	345,180	6,971,877	494	-60	225	140	66	75	9	1.32
Boundary	BDRD0131	345,265	6,971,746	495	-60	225	160	62	66	4	1.94
Boundary	BDRD0132	345,166	6,971,887	494	-60	225	140	111	113	2	2.80
Boundary	BDRD0133	345,215	6,971,789	495	-60	225	160	22	25	3	0.74
Boundary	BDRD0135	345,159	6,971,902	494	-60	225	140	94	101	7	1.12
Boundary	BDRD0137 BDRD0138	345,147 345,208	6,971,922 6,971,810	494 495	-60 -60	225	140 140	121	122	1 14	2.16 0.98
Boundary Boundary	BDRD0138	345,208	6,971,810	495	-60	225 225	140	123 61	137 62	14	2.78
Boundary	BDRD0138 BDRD0139	345,264	6,971,808	495	-60	225	159	77	89	12	0.98
Boundary	BDRD0139	345,264	6,971,808	495	-60	225	159	66	72	6	0.96
Boundary	BDRD0139 BDRD0140	345,259	6,971,434	498	-60	225	170	142	146	4	0.74
Boundary	BDRD0140	345,182	6,971,517	497	-60	225	120	96	104	8	2.17
Boundary	BDRD0144	345,259	6,971,681	496	-60	225	190	36	47	11	1.10
Boundary	BDRD0148	345,200	6,971,704	495	-60	225	232	58	61	3	3.08
Boundary	BRC1001	345,245	6,971,856	495	-60	0	155	88	110	22	2.09

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	BRC1001	345,245	6,971,856	495	-60	0	155	64	82	18	1.02
Boundary	BRC1001	345,245	6,971,856	495	-60	0	155	132	133	1	4.30
Boundary	BRC1001	345,245	6,971,856	495	-60	0	155	118	123	5	0.72
Boundary	BRC1002	345,248	6,971,821	495	-60	0	162	58	77	19	7.89
Boundary	BRC1002	345,248	6,971,821	495	-60	0	162	89	110	21	1.58
Boundary	BRC1002	345,248	6,971,821	495	-60	0	162	15	22	7	1.42
Boundary	BRC1002	345,248	6,971,821	495	-60	0	162	129	132	3	3.00
Boundary	BRC1002	345,248	6,971,821	495	-60	0	162	120	124	4	1.14
Boundary	BRC1003	345,225	6,971,860	494	-60	0	156	126	128	2	19.35
Boundary Boundary	BRC1003 BRC1004	345,225 345,227	6,971,860	494 495	-60 -60	0	156	91 30	98 36	7	1.12 5.70
Boundary	BRC1004 BRC1004	345,227	6,971,825 6,971,825	495	-60	0	152 152	82	84	6 2	7.90
Boundary	BRC1004	345,227	6,971,825	495	-60	0	152	89	91	2	1.83
Boundary	BRC1004	345,227	6,971,825	495	-60	0	152	124	129	5	0.65
Boundary	BRC1005	345,255	6,971,702	496	-60	0	160	60	96	36	1.36
Boundary	BRC1005	345,255	6,971,702	496	-60	0	160	18	30	12	0.70
Boundary	BRC1005	345,255	6,971,702	496	-60	0	160	51	53	2	2.45
Boundary	BRC1005	345,255	6,971,702	496	-60	0	160	115	122	7	0.66
Boundary	BRC1005	345,255	6,971,702	496	-60	0	160	101	102	1	2.60
Boundary	DAC7	345,204	6,972,036	494	-60	270	60	0	4	4	0.96
Boundary	DD005	345,235	6,971,939	494	-75	90	125	86	94	8	0.63
Boundary	DD005	345,235	6,971,939	494	-75	90	125	102	104	2	1.01
Boundary	DRC13	345,234	6,971,539	497	-60	270	207	30	35	5	8.12
Boundary	DRC13	345,234	6,971,539	497	-60	270	207	60	61	1	2.22
Boundary	DRC14	345,280	6,971,816	495	-60	270	152	64	95	31	1.07
Boundary	DRC14	345,280	6,971,816	495	-60	270	152	147	152	5	1.36
Boundary	DRC15	345,343	6,971,821	495	-60	270	132	68	77	9	1.93
Boundary	DRC15	345,343	6,971,821	495	-60	270	132	114	115	1	3.47
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	186	200	14	1.01
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	135	152	17	0.57
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	77	81	4	2.22
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	93	101	8	1.08
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	108	115	7	1.22
Boundary	DRC16	345,354	6,971,871	495	-66	270	201	123	127	4	1.20
Boundary	DRC17	345,258	6,971,890	494	-65	270	147	76	80	4	0.59
Boundary	DRC17	345,258	6,971,890	494	-65	270	147	28	32	4	0.57
Boundary	DRC17	345,258	6,971,890	494	-65	270	147	96	100	4	0.57
Boundary	DRP175	345,235	6,971,940	494	-90	0	53	41	53	12	1.61
Boundary Boundary	DRP176 DRP352	345,259 345,247	6,971,941 6,971,742	494 495	-90 -60	270	73	20	34	24 11	3.88 0.83
Boundary	DRP352 DRP357	345,247	6,971,742	495	-60	268	71	62	64	2	1.42
Boundary	DRP361	345,250	6,971,640	496	-60	265	52	44	52	8	1.42
Boundary	DRP376	345,273	6,971,793	495	-60	266	74	68	72	4	0.79
Boundary	DRP378	345,322	6,971,796	495	-60	272	69	63	69	6	1.00
Boundary	DRF 370	345,222	6,971,690	496	-60	270	74	58	66	8	1.00

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	NPRD0019	345,221	6,971,343	498	-60	225	100	88	91	3	2.19
Boundary	NPRD0019	345,221	6,971,343	498	-60	225	100	73	76	3	0.82
Boundary	NPRD0075	345,239	6,971,411	498	-60	225	200	92	103	11	1.33
Boundary	NPRD0075	345,239	6,971,411	498	-60	225	200	187	197	10	0.53
Boundary	NPRD0075	345,239	6,971,411	498	-60	225	200	126	127	1	2.22
Boundary	NPRD0076	345,211	6,971,391	498	-60	225	200	63	72	9	3.19
Boundary	NPRD0076	345,211	6,971,391	498	-60	225	200	109	125	16	1.24
Boundary	NPRD0076	345,211	6,971,391	498	-60	225	200	77	79	2	8.39
Boundary	NPRD0076	345,211	6,971,391	498	-60	225	200	102	103	1	3.67
Boundary	NPRD0077	345,234	6,971,345	498	-60	225	200	96	109	13	1.01
Boundary	NPRD0077	345,234	6,971,345	498	-60	225	200	83	84	1	3.55
Boundary	NPRD0078 NPRD0079	345,215	6,971,344	498	-60	225	150	82 87	91	9	9.44
Boundary Boundary	NPRD0079	345,195 345,197	6,971,344 6,971,411	498 497	-60 -60	225 225	200	67	92 69	5 2	0.57 1.21
Boundary	NPRD0083	345,197	6,971,411	497	-60	225	150	12	17	5	0.51
Boundary	NPRD0084	345,167	6,971,431	498	-60	225	150	16	19	3	1.99
Boundary	NPRD0084	345,167	6,971,431	498	-60	225	150	75	77	2	1.80
Boundary	NPRD0085	345,250	6,971,519	497	-60	225	200	112	114	2	2.10
Boundary	NPRD0086	345,250	6,971,554	497	-60	225	150	77	94	17	2.12
Boundary	NPRD0087	345,255	6,971,585	496	-60	225	150	148	150	2	11.61
Boundary	NPRD0087	345,255	6,971,585	496	-60	225	150	83	88	5	0.86
Boundary	NPRD0088	345,257	6,971,612	496	-60	225	150	134	135	1	3.24
Boundary	NPRD0088	345,257	6,971,612	496	-60	225	150	72	74	2	1.16
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	42	51	9	13.55
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	120.1	144	24	2.55
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	59	78	19	2.18
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	155.5	164.9	9	2.21
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	149	150	1	11.90
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	22	24	2	2.77
Boundary	WDDH1	345,294	6,971,843	495	-60	270	215	97	101	4	0.59
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	151	181	30	5.16
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	121	138	17	2.15
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	218	224	6	2.55
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	66	83	17	0.63
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	204	210	6	0.53
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	90	92	2	1.52
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	243	244	1	2.70
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	99	100	1	2.21
Boundary	WDDH10	345,337	6,971,921	494	-60	270	250	235	236	1	2.14
Boundary	WDDH11	345,332	6,971,846	495	-60	270	262	251	254	3	2.35
Boundary	WDDH11	345,332	6,971,846	495	-60	270	262	104	114	10	0.66
Boundary	WDDH11	345,332	6,971,846	495	-60	270	262	152	158	6	0.53
Boundary	WDDH11	345,332	6,971,846	495	-60	270	262	18	19	1	2.59
Boundary	WDDH11	345,332	6,971,846	495	-60	270	262	90	92	2	1.07
Boundary	WDDH12	345,354	6,971,947	494	-60	270	228	226	227	1	23.94

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	WDDH12	345,354	6,971,947	494	-60	270	228	156	157	1	9.33
Boundary	WDDH12	345,354	6,971,947	494	-60	270	228	133	142	9	0.98
Boundary	WDDH12	345,354	6,971,947	494	-60	270	228	186	192	6	1.11
Boundary	WDDH12	345,354	6,971,947	494	-60	270	228	87	90	3	1.68
Boundary	WDDH13	345,321	6,971,919	494	-60	270	150	23	25	2	21.00
Boundary	WDDH13	345,321	6,971,919	494	-60	270	150	86	106	20	1.86
Boundary	WDDH13 WDDH13	345,321	6,971,919	494	-60	270	150	137	149	12	2.46
Boundary	WDDH13 WDDH13	345,321 345,321	6,971,919 6,971,919	494 494	-60 -60	270 270	150 150	125 72	129 80	8	6.87 1.73
Boundary Boundary	WDDH13 WDDH13	345,321	6,971,919	494	-60	270	150	115	119	4	1.73
Boundary	WDDH13	345,321	6,971,919	494	-60	270	150	65	66	1	2.73
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	131	137	6	5.59
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	53	59	6	4.12
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	99	111	12	1.32
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	15	23	8	1.84
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	86	94	8	1.60
Boundary	WDDH14	345,288	6,971,892	495	-60	270	150	66	78	12	0.58
Boundary	WDDH2	345,152	6,971,833	494	-60	90	189	133	135	2	31.32
Boundary	WDDH2	345,152	6,971,833	494	-60	90	189	146	147.2	1	3.47
Boundary	WDDH3	345,174	6,971,889	494	-72	135	284	216	234	18	2.98
Boundary	WDDH3	345,174	6,971,889	494	-72	135	284	239	242	3	9.46
Boundary	WDDH3	345,174	6,971,889	494	-72	135	284	198	207	9	1.21
Boundary	WDDH3	345,174	6,971,889	494	-72	135	284	185	189	4	1.98
Boundary	WDDH3	345,174	6,971,889	494	-72	135	284	135.1	138.7	4	1.29
Boundary	WDDH4	345,412	6,971,852	495	-60	270	111	68	70	2	2.53
Boundary	WDDH4	345,412	6,971,852	495	-60	270	111	89	93	4	0.66
Boundary	WDDH5	345,305	6,971,818	495	-60	270	257	67	85	18	0.83
Boundary	WDDH5	345,305	6,971,818	495	-60	270	257	105	108	3	0.84
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	181	182	1	15.30
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	71	86	15	0.93
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	256	259	3	3.49
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	213	219	6	0.74
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	142	147	5	0.65
Boundary	WDDH7	345,325	6,971,870	495	-60	270	276	103	105.5	3	1.02
Boundary	WDDH7	345,325	6,971,870	495 494	-60	270	276	38	43	5	0.61
Boundary Boundary	WDDH8 WDDH8	345,313 345,313	6,971,894 6,971,894	494	-60 -60	270 270	204	171 23	176	5 1	60.25 17.39
Boundary	WDDH8	345,313	6,971,894	494	-60	270	204	105	24 122	17	0.96
Boundary	WDDH8	345,313	6,971,894	494	-60	270	204	69	80	11	0.90
Boundary	WDDH8	345,313	6,971,894	494	-60	270	204	145	146	1	5.54
Boundary	WDDH8	345,313	6,971,894	494	-60	270	204	94	99.4	5	0.67
Boundary	WDDH8 WDDH9	345,333	6,971,894	494	-60	270	250	196	207	11	16.56
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	212	229	17	1.67
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	243	244	1	16.92
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	120	123	3	3.08

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	145	151	6	1.04
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	103	104	1	4.57
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	157	160	3	1.46
Boundary	WDDH9	345,333	6,971,896	494	-60	270	250	130	134	4	1.03
Boundary	WRC1	345,224	6,971,838	495	-60	89	78	64	78	14	2.33
Boundary	WRC1	345,224	6,971,838	495	-60	89	78	16	26	10	1.57
Boundary	WRC1	345,224	6,971,838	495	-60	89	78	48	49	1	4.57
Boundary	WRC10	345,212	6,971,910	494	-60	89	82	74	82	8	1.73
Boundary	WRC10	345,212	6,971,910	494	-60	89	82	56	68	12	0.80
Boundary	WRC11	345,234	6,971,865	494	-60	88	64	48	50	2	3.36
Boundary	WRC11	345,234	6,971,865	494	-60	88	64	20	22	2	1.25
Boundary	WRC12	345,208	6,971,587	496	-70	89	58	31 82	58	27	1.47
Boundary Boundary	WRC13 WRC14	345,263 345,265	6,971,540 6,971,588	497 496	-60 -60	270 270	106 94	62	93 69	11 7	1.07 0.59
Boundary	WRC14 WRC17	345,203	6,971,842	495	-60	269	114	66	114	48	3.44
Boundary	WRC17	345,275	6,971,842	495	-60	269	114	43	45	2	8.21
Boundary	WRC17	345,275	6,971,842	495	-60	269	114	27	29	2	2.92
Boundary	WRC17	345,275	6,971,842	495	-60	269	114	19	20	1	2.77
Boundary	WRC18	345,300	6,971,844	494	-60	269	103	20	23	3	4.80
Boundary	WRC18	345,300	6,971,844	494	-60	269	103	86	100	14	0.91
Boundary	WRC18	345,300	6,971,844	494	-60	269	103	64	69	5	2.53
Boundary	WRC18	345,300	6,971,844	494	-60	269	103	74	76	2	4.49
Boundary	WRC19	345,272	6,971,892	494	-60	269	87	61	87	26	1.04
Boundary	WRC19	345,272	6,971,892	494	-60	269	87	16	23	7	0.52
Boundary	WRC2	345,190	6,971,835	494	-60	89	97	75	92	17	0.70
Boundary	WRC21	345,299	6,971,944	494	-60	269	81	64	80	16	0.56
Boundary	WRC21	345,299	6,971,944	494	-60	269	81	51	56	5	1.41
Boundary	WRC23	345,298	6,971,844	495	-60	269	88	42	51	9	12.55
Boundary	WRC23	345,298	6,971,844	495	-60	269	88	72	78	6	5.14
Boundary	WRC23	345,298	6,971,844	495	-60	269	88	22	24	2	2.82
Boundary	WRC24	345,285	6,971,867	494	-60	269	126	66	119	53	3.55
Boundary	WRC24	345,285	6,971,867	494	-60	269	126	44	48	4	6.48
Boundary	WRC24	345,285	6,971,867	494	-60	269	126	33	37	4	1.40
Boundary	WRC24	345,285	6,971,867	494	-60	269	126	22	26	4	0.91
Boundary	WRC24	345,285	6,971,867	494	-60	269	126	14	15	1	3.19
Boundary	WRC25	345,279	6,971,820	495	-60	270	126	66	90	24	1.95
Boundary	WRC25	345,279	6,971,820	495	-60	270	126	106	119	13	0.65
Boundary	WRC26	345,294	6,971,891	494	-60	269	128	65	88	23	1.52
Boundary	WRC26	345,294	6,971,891	494	-60	269	128	94	101	7	0.89
Boundary	WRC26	345,294	6,971,891	494	-60	269	128	118	128	10	0.56
Boundary	WRC27	345,307	6,971,918	494	-60	269	119	86	111	25	1.09
Boundary	WRC27	345,307	6,971,918	494	-60	269	119	59	70	11	2.20
Boundary	WRC27	345,307	6,971,918	494	-60	269	119	23	24	1	16.57
Boundary	WRC27	345,307	6,971,918	494	-60	269	119	118	119	1	2.53
Boundary	WRC29	345,167	6,971,588	496	-60	87	100	79	88	9	1.06

Prospect	Hole Name	Easting	Northing	RL	Azi	Dip	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	WRC3	345,236	6,971,889	494	-60	89	65	48	57	9	0.66
Boundary	WRC4	345,212	6,971,887	494	-60	86	68	60	68	8	0.79
Boundary	WRC6	345,189	6,971,935	494	-60	88	88	50	52	2	2.63
Boundary	WRC8	345,204	6,971,960	494	-60	89	76	54	58	4	0.91

Appendix Six | JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data from Historic Bullseye and previous tenement holders drilling

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Previously completed Bullseye Drill programmes at the reported holes with the prefix NPRD, NPGC, NPMI STRD, STRGW, BDRD, BDGW, LAVRD, LAVGW HRRD). All others are historic drill results. The Bullseye completed RC holes were processe through a fixed cone splitter in 1m intervals to reduct the RC sample to between a 2kg to 4kg sample. The Bullseye diamond holes were sampled of geological logging and cut in half, with a minim sample length of 0.1m; Bullseye's Core sampling will limited to metallurgical testwork on selecter mineralised zones. Most of the historic drilling samples were processed through a cyclone on a 1 metre basis. The specific subtampling equipment utilised is not known and therefore representivity is not known. Historical drilling results in this ASX release were completed by either Ausmet/Deep Yellow, Eagle Mining, Julia Mines NL and Korab Resources Ltd. Bullseye undertook field investigations to confirm collar locations (with a licenced surveyor and DGF equipment) and evidence of work areas. The finding of this field investigation corresponded well with the reported works. The Bullseye drill holes had standard samples inserted in sample batches to test laboratory performance. The historic drilling's use of standards is unknown. The Bullseye drill programmes used the following lab and methodology: Bureau Veritas, Kalgoorlie; Milled to <75um and assayed using fire assay (40g) with additional AA and methodology: Jinning Labs, Kalgoorlie; Milled to <75um and assayed using fire assay (50g) with additional AA and methodology: ALS Metallurgy, where the samples were tested using Fire Assay with an ICP-MS finish; Amdel Kalgoorlie by Julia Mines NL in 2000; Diamond holes were assayed by FA ARM1, and AA7; ROLES METALLED RESOLUTION. Als Metallurgy, w

tested using Fire Assay. Assayed at Analabs specific technique is

SGS Kalgoorlie using F650 (50g) Fire Assay.

Australian Laboratory Services, Kalgoorlie using Aqua Regia Digest. Assay results of 100gm or greater were fire assayed using 50g charge and

unknown.

AAS finish;

Criteria	JORC Code explanation	Commentary
		Kalgoorlie Assay Laboratories where samples were crushed and milled to <75um and assayed using aqua regia digest followed by ICP-MS. Australian Assay Laboratories, Boulder, where the samples were crushed and milled to <75um and assayed using a 50g Fire assay with additional AAS.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Bullseye Drill Programmes (1,118 collars for 84,028m) included 80,684m RC using a 5.5 inch hammer and 3,344m Diamond core (HQ & NQ2). All collars completed by Bullseye were picked up by a licensed onsite surveyor. Bullseye undertook field investigations to confirm historic collar locations (with a licenced surveyor and DGPS equipment) and evidence of work areas. The findings of this field investigation corresponded well with the reported works. Most non vertical Bullseye holes (99%) were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™ or similar).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All Bullseye RC 1m samples and sub-samples (pre- and post-split) are weighed at the drill rig, to check that there is adequate sample material for assay. Any wet or damp samples are noted and that information is recorded in the database; samples are usually dry. Both the Bullseye RC and Diamond sample recovery was +95% recovery. The drilling results relate to historical sampling results. Drill recoveries are not known. It is not possible to confirm the relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes drilled by Bullseye Mining Limited have been geologically logged. Logging recorded lithology, mineralogy, alteration, weathering, texture, sulphide content, veining and macro structure; The geological legend has evolved from historic observations and recent logging determinations and is consistent with the regional and local geology; Bullseye cannot verify the detail and full scope of the historical logging from the available reports.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All Bullseye Mining Limited RC samples were processed through a fixed cone splitter at 1m intervals with the sample to reduce the RC sample to between a 2kg to 4kg sample. Any wet or damp samples are noted and that information is recorded in the database; samples are usually dry. The Bullseye diamond holes were sampled on geological logging and cut in half, with a minimal sample length of 0.1m. Assaying was completed at Bureau Veritas – samples dried at 85° Celsius, crushed and milled to 90% passing -75µm. Assay was 40g fire assay with AAS finish for gold. Historic Drill results were processed at various laboratories including: ALS Metallurgy, where they were tested using Fire Assay with an ICP-MS finish; Amdel Kalgoorlie by Julia Mines NL in 2000; Diamond holes were assayed by FA1, ARM1, and AA7; RC holes were composite assayed by Aqua Regia, but 1m samples were tested using Fire Assay. Assayed at Analabs specific technique is unknown. Australian Laboratory Services, Kalgoorlie using Aqua Regia Digest. Assay results of 100gm or greater were fire assayed using 50g charge and AAS finish; SGS Kalgoorlie using F650 (50g) Fire Assay.

Criteria	JORC Code explanation	Commentary
		 Kalgoorlie Assay Laboratories where samples were crushed and milled to <75um and assayed using aqua regia digest followed by ICP-MS. Australian Assay Laboratories, Boulder, where they were crushed and milled to <75um and assayed using a 50g Fire assay with additional AAS. The historical data available to Emerald is such that Emerald cannot reliably confirm that the historical RC samples were dry and free of free of significant contamination. Emerald cannot specifically confirm that the RC drilling results have not been compromised due to excessive moisture of contamination.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The bullseye drill programmes followed Industry-standard QAQC protocols QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs at rate of 1 for every 20 field samples and pulp blanks at a rate of 1 for every 50 field samples. Field duplicates were collected at the drill rig, directly from the cyclone at a rate of one in every 50 samples for all Bullseye drilling programmes. Adherence to appropriate sample preparation and analytical quality control programmes for the historical sampling cannot be verified. Adherence to industry standard QAQC protocols for the historical sampling and assays cannot be verified
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols in place. Data verification and validation procedures undertaken by Bullseye included checks on collar position against design and site survey collar pick-ups by GEMS. Hole depths were cross-checked in the geology logs, down hole surveys, sample sheets and assay reports to ensure consistency. All down hole surveys were exposed to rigorous QAQC and drill traces were plotted in 3D for validation and assessment of global deviation trends. Bullseye have conducted a comparison of historic drilling holes against the recent Bullseye drill programme results. The comparison has showed solid correlation between the historic priority one holes and the recent drilling for both geology and grade.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used is MGA_94. The creation of the topographic surface is based on a site survey pick-up by GEMS; Collars of holes drilled by Bullseye Mining have been picked up by GEMS or alternative licensed on-site surveyor using a Trimble GNSS DGPS. Where identified, historical drill holes have also been picked using the DGPS; The Bullseye RC and diamond holes were downhole surveyed using a gyroscopic survey tool. Vertical holes were not surveyed; Historical priority one holes were not down hole surveyed.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources. Page 48 of 51

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Sample security	The measures taken to ensure sample security.	 All RC samples were sampled each with a unique sample number. These calicos were collected from the drill sites in allotments of 1 tonne bulka bags. These bulka bags were loaded by Bullseye field staff and delivered to respective Laboratories by road freight. The process for collection and transportation for historic drill samples cannot be confirmed
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported Bullseye have audited and reviewed the historical Bungarra database (including cataloguing, validating and verifying all hardcopy and softcopy historical data from Julia Mines NL, Eagle Mining NL, Deep Yellow NL and Korab Resources Ltd).

Section 2 Reporting of Exploration Results from Historic Bullseye and previous tenement holders drilling

(Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Boundary Gold Project is 100% held by Bullsey Mining Limited. The Bungarra Gold Project is 100% held by Bullsey Mining Limited. The Stirling Gold Project is 100% held by Bullsey Mining Limited. The Hurleys Gold Project is 100% held by Bullsey Mining Limited. All tenure is considered to be secure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	
Geology	Deposit type, geological setting and style of mineralisation.	 Boundary: geology comprises a surrounding basa country rock and banded iron formation (BIF). The Boundary deposit is associated with quartz veining weathered saprolite and saprock predominate overlying a steeply plunging granodiorite. Going Mineralisation is within the quartz veins but extend well into the fresh granodiorite to a depth of som 160m below surface. Additional gold mineralisation seen in the surrounding basalt proximal to the contact with the granodiorite; The weathering profile has a partially oxidized 'saprocunit overlying fresh rock at about 50m depth in the north deepening to about 70m in the south, forming weathered basin overlying the granodiorite. Within the basin, a saprolite unit occurs in association with a more extensive clay/sand (palaeochannel) infill zone and a extensive laterite overlies all units. Bungarra: Geology comprises a basalt/mafic count rock with a steep plunging gabbro and lamprophyloccurring at the southern end of identification. A sheared basalt unit and flat lyinguartz vein zone occur above the base of oxidation;

Criteria	Explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar; - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; - dip and azimuth of the hole; - down hole length and interception depth; - hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract	The weathering profile has a partially oxidized 'saprock' unit overlying fresh rock at about 25m depth in the south deepening to about 65m in the north. A small saprolite unit occurs in association with a more extensive clay saprolite zone and an extensive laterite overlies all units; Mineralisation is interpreted into five discrete domains albeit with some degree of connectivity. The main domain is a number of interconnected sub-horizontal lenses largely coincident with the quartz veining (Domain 1). Deeper, southerly plunging domains occur in the area of the gabbro to the south. Two additional domains are identified occurring within the fresh rock below the main sub-horizontal lode. • Stirling: The geology at Stirling comprises a 'BIF' unit overlaying a basalt with a minor granodiorite intrusion; The weathering profile is typical of the northern Goldfields area with a thing cover ('Laterite') unit overlying clay/saprolite, over a partially oxidised 'saprock' unit, all overlying fresh rock. Fresh rock is 50m below surface in the south and 65m below surface in the northwest; The majority of Au mineralisation is hosted in the overlying BIF but mineralisation does continue into the underlying basalt. The mineralisation is thought to have a structural control following a northwest strike and a plunge of 40° northwest. The mineralisation at Stirling is seen in all weathering domains except the surface laterite. Au mineralisation was interpreted into a nominal >0.6g/t Au wireframe shell using Leapfrog software. It demonstrated a solid volume of concentrated higher Au grade close to surface (within 10m from surface) and a narrower plunge at depth to the northwest. • Hurleys: Geology comprises a basalt country rock, sulphidic black shale, a highly mafic unit, likely a peridotite and gabbro. Gold Mineralisation is as shallow as a few metres below surface, extends to some 100m below surface and is open at depth; The weathering profile displays a surface laterite, followed by clay/saprolite weathering. Saprock is shar
Data aggregation	from the understanding of the report, the Competent Person should clearly explain why this is the case. • In reporting Exploration Results, weighting	No high grade top cuts have been applied.
methods	averaging techniques, maximum and/or	

Criteria	Explanation	Commentary
	minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	The reported significant intersections in Appendix Five are above 2 gram metre intersections and allow for up to 4m of internal dilution with a lower cut trigger values of greater than 0.5g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The majority of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and diagrams are included in the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Significant drilling results above 2 gram metre are reported in Appendix Five.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Surface geological mapping and detailed structural interpretation have helped inform the geological models. Initial metallurgical, geotechnical and hydrogeological drilling has been carried out.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional drilling programmes are being planned across all exploration licences.